Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012 (2012), Article ID 691363, 8 pages
http://dx.doi.org/10.1155/2012/691363
Research Article

Endocytosis and Sphingolipid Scavenging in Leishmania mexicana Amastigotes

1Biophysical Sciences Institute, Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
2School of Medicine and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, UK

Received 28 June 2011; Revised 18 July 2011; Accepted 22 July 2011

Academic Editor: Terry K. Smith

Copyright © 2012 Hayder Z. Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Molina, L. Gradoni, and J. Alvar, “HIV and the transmission of Leishmania,” Annals of Tropical Medicine and Parasitology, vol. 97, no. 1, pp. S29–S45, 2003. View at Google Scholar · View at Scopus
  2. J. Nyalwidhe, U. G. Maier, and K. Lingelbach, “Intracellular parasitism: cell biological adaptations of parasitic protozoa to a life inside cells,” Zoology, vol. 106, no. 4, pp. 341–348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Antoine, T. Lang, E. Prina, N. Courret, and R. Hellio, “H-2M molecules, like MHC class II molecules, are targeted to parasitophorous vacuoles of Leishmania-infected macrophages and internalized by amastigotes of L. amazonensis and L. mexicana,” Journal of Cell Science, vol. 112, no. 15, pp. 2559–2570, 1999. View at Google Scholar · View at Scopus
  4. S. De Souza Leao, T. Lang, E. Prina, R. Hellio, and J. C. Antoine, “Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells,” Journal of Cell Science, vol. 108, no. 10, pp. 3219–3231, 1995. View at Google Scholar · View at Scopus
  5. V. M. Borges, M. A. Vannier-Santos, and W. De Souza, “Subverted transferrin trafficking in Leishmania-infected macrophages,” Parasitology Research, vol. 84, no. 10, pp. 811–822, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. D. G. Russell, S. Xu, and P. Chakraborty, “Intracellular trafficking and the parasitophorous vacuole of Leishmania mexicana-infected macrophages,” Journal of Cell Science, vol. 103, no. 4, pp. 1193–1210, 1992. View at Google Scholar · View at Scopus
  7. V. V. Andrade-Neto, N. N.T. Cicco, E. F. Cunha-Junior, M. M. Canto-Cavalheiro, G. C. Atella, and E. C. Torres-Santos, “The pharmacological inhibition of sterol biosynthesis in Leishmania is counteracted by enhancement of LDL endocytosis,” Acta Tropica, vol. 119, no. 2-3, pp. 194–198, 2011. View at Publisher · View at Google Scholar
  8. N. Patel, S. B. Singh, S. K. Basu, and A. Mukhopadhyay, “Leishmania requires Rab7-mediated degradation of endocytosed hemoglobin for their growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3980–3985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Hanada, “Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism,” Biochimica et Biophysica Acta, vol. 1632, no. 1–3, pp. 16–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Nagiec, E. E. Nagiec, J. A. Baltisberger, G. B. Wells, R. L. Lester, and R. C. Dickson, “Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene,” Journal of Biological Chemistry, vol. 272, no. 15, pp. 9809–9817, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Mina, S. Y. Pan, N. K. Wansadhipathi et al., “The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target,” Molecular and Biochemical Parasitology, vol. 168, no. 1, pp. 16–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Sutterwala, F. F. Hsu, E. S. Sevova et al., “Developmentally regulated sphingolipid synthesis in African trypanosomes,” Molecular Microbiology, vol. 70, no. 2, pp. 281–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. W. Denny, D. Goulding, M. A. J. Ferguson, and D. F. Smith, “Sphingolipid-free Leishmania are defective in membrane trafficking, differentiation and infectivity,” Molecular Microbiology, vol. 52, no. 2, pp. 313–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Zhang, F. F. Hsu, D. A. Scott, R. Docampo, J. Turk, and S. M. Beverley, “Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis,” Molecular Microbiology, vol. 55, no. 5, pp. 1566–1578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ghosh, S. Bhattacharyya, S. Das et al., “Generation of ceramide in murine macrophages infected with Leishmania donovani alters macrophage signaling events and aids intracellular parasitic survival,” Molecular and Cellular Biochemistry, vol. 223, no. 1-2, pp. 47–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Xu et al., “Sphingolipid degradation by Leishmania is required for its resistance to acidic pH in the mammalian host,” Infection and Immunity, vol. 79, no. 8, pp. 3377–3387, 2011. View at Google Scholar
  18. O. Zhang, M. C. Wilson, W. Xu et al., “Degradation of host sphingomyelin is essential for Leishmania virulence,” PLoS Pathogens, vol. 5, no. 12, Article ID e1000692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Heinzen, M. A. Scidmore, D. D. Rockey, and T. Hackstadt, “Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis,” Infection and Immunity, vol. 64, no. 3, pp. 796–809, 1996. View at Google Scholar · View at Scopus
  20. P. A. Bates, “Complete developmental cycle of Leishmania mexicana in axenic culture,” Parasitology, vol. 108, no. 1, pp. 1–9, 1994. View at Google Scholar · View at Scopus
  21. J. G. Mina, J. A. Mosely, H. Z. Ali, P. W. Denny, and P. G. Steel, “Exploring Leishmania major Inositol Phosphorylceramide Synthase (LmjIPCS): insights into the ceramide binding domain,” Organic and Biomolecular Chemistry, vol. 9, no. 6, pp. 1823–1830, 2011. View at Publisher · View at Google Scholar
  22. J. G. Mina, J. A. Mosely, H. Z. Ali et al., “A plate-based assay system for analyses and screening of the Leishmania major inositol phosphorylceramide synthase,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 9, pp. 1553–1561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. W. Denny, H. Shams-Eldin, H. P. Price, D. F. Smith, and R. T. Schwarz, “The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase,” Journal of Biological Chemistry, vol. 281, no. 38, pp. 28200–28209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. W. Denny, S. Lewis, J. E. Tempero et al., “Leishmania RAB7: characterisation of terminal endocytic stages in an intracellular parasite,” Molecular and Biochemical Parasitology, vol. 123, no. 2, pp. 105–113, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Taylor, P. C. Thomson, K. de Silva, and R. J. Whittington, “Validation of endogenous reference genes for expression profiling of RAW264.7 cells infected with Mycobacterium avium subsp. paratuberculosis by quantitative PCR,” Veterinary Immunology and Immunopathology, vol. 115, no. 1-2, pp. 43–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. K. A. Natesan, L. Peacock, K. Matthews, W. Gibson, and M. C. Field, “Activation of endocytosis as an adaptation to the mammalian host by trypanosomes,” Eukaryotic Cell, vol. 6, no. 11, pp. 2029–2037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. W. Morgan, B. S. Hall, P. W. Denny, M. C. Field, and M. Carrington, “The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system,” Trends in Parasitology, vol. 18, no. 12, pp. 540–546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. G. W. Morgan, B. S. Hall, P. W. Denny, M. Carrington, and M. C. Field, “The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences,” Trends in Parasitology, vol. 18, no. 11, pp. 491–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. F. L. Chadbourne et al., “Studies on the antileishmanial properties of the antimicrobial peptides temporin A, B and 1Sa,” Journal of Peptide Science. In press. View at Publisher · View at Google Scholar
  30. E. Ghedin, A. Debrabant, J. C. Engel, and D. M. Dwyer, “Secretory and endocytic pathways converge in a dynamic endosomal system in a primitive protozoan,” Traffic, vol. 2, no. 3, pp. 175–188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. McConville and J. M. Blackwell, “Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani,” Journal of Biological Chemistry, vol. 266, no. 23, pp. 15170–15179, 1991. View at Google Scholar
  32. P. Schneider, J. P. Rosat, A. Ransijn, M. A. J. Ferguson, and M. J. McConville, “Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major,” Biochemical Journal, vol. 295, no. 2, pp. 555–564, 1993. View at Google Scholar · View at Scopus
  33. G. Winter, M. Fuchs, M. J. McConville, Y. D. Stierhof, and P. Overath, “Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid,” Journal of Cell Science, vol. 107, no. 9, pp. 2471–2482, 1994. View at Google Scholar · View at Scopus
  34. S. Ghosh, S. Bhattacharyya, M. Sirkar et al., “Leishmania donovani suppresses activated protein 1 and NF-κB activation in host macrophages via ceramide generation: involvement of extracellular signal-regulated kinase,” Infection and Immunity, vol. 70, no. 12, pp. 6828–6838, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Hanada, M. Nishijima, T. Fujita, and S. Kobayashi, “Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells. A novel evaluation system using an SPT-defective mammalian cell mutant,” Biochemical Pharmacology, vol. 59, no. 10, pp. 1211–1216, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. J. E. Ralton, K. A. Mullin, and M. J. McConville, “Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana,” Biochemical Journal, vol. 363, no. 2, pp. 365–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Hanada, M. Nishijima, M. Kiso et al., “Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids,” Journal of Biological Chemistry, vol. 267, no. 33, pp. 23527–23533, 1992. View at Google Scholar · View at Scopus
  38. K. Zhang, M. Showalter, J. Revollo, F. F. Hsu, J. Turk, and S. M. Beverley, “Sphingolipids are essential for differentiation but not growth in Leishmania,” EMBO Journal, vol. 22, no. 22, pp. 6016–6026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Besteiro, G. H. Coombs, and J. C. Mottram, “A potential role for ICP, a leishmanial inhibitor of cysteine peptidases, in the interaction between host and parasite,” Molecular Microbiology, vol. 54, no. 5, pp. 1224–1236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Paape, M. E. Barrios-Llerena, T. Le Bihan, L. Mackay, and T. Aebischer, “Gel free analysis of the proteome of intracellular Leishmania mexicana,” Molecular and Biochemical Parasitology, vol. 169, no. 2, pp. 108–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Courret, C. Frehel, E. Prina, T. Lang, and J. C. Antoine, “Kinetics of the intracellular differentiation of Leishmania amazonensis and internalization of host MHC molecules by the intermediate parasite stages,” Parasitology, vol. 122, no. 3, pp. 263–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. P. W. Denny, G. W. Morgan, M. C. Field, and D. F. Smith, “Leishmania major: clathrin and adaptin complexes of an intra-cellular parasite,” Experimental Parasitology, vol. 109, no. 1, pp. 33–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Chenik, N. Chaabouni, Y. B. Achour-Chenik et al., “Identification of a new developmentally regulated Leishmania major large RAB GTPase,” Biochemical and Biophysical Research Communications, vol. 341, no. 2, pp. 541–548, 2006. View at Publisher · View at Google Scholar · View at Scopus