Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012, Article ID 712315, 16 pages
http://dx.doi.org/10.1155/2012/712315
Review Article

At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis

Department of Biological Sciences, CW405, Biological Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2E9

Received 5 August 2011; Accepted 10 October 2011

Academic Editor: Sanford I. Bernstein

Copyright © 2012 J. Layne Myhre and David B. Pilgrim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. J. Mase Jr., J. R. Hsu, S. E. Wolf et al., “Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect,” Orthopedics, vol. 33, no. 7, p. 511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Jungebluth and P. MacChiarini, “Stem cell-based therapy and regenerative approaches to diseases of the respiratory system,” British Medical Bulletin, vol. 99, no. 1, pp. 169–187, 2011. View at Publisher · View at Google Scholar
  3. J. E. Valentin, N. J. Turner, T. W. Gilbert, and S. F. Badylak, “Functional skeletal muscle formation with a biologic scaffold,” Biomaterials, vol. 31, no. 29, pp. 7475–7484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. N. J. Turner and S. F. Badylak, “Regeneration of skeletal muscle,” Cell and Tissue Research, 2011. View at Publisher · View at Google Scholar
  5. D. E. Ingber and M. Levin, “What lies at the interface of regenerative medicine and development?” Development, vol. 134, no. 14, pp. 2541–2547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Badylak and R. M. Nerem, “Progress in tissue engineering and regenerative medicine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3285–3286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. F. Badylak, D. Taylor, and K. Uygun, “Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds,” Annual Review of Biomedical Engineering, vol. 13, pp. 27–53, 2011. View at Publisher · View at Google Scholar
  8. J. M. Wainwright, C. A. Czajka, U. B. Patel et al., “Preparation of cardiac extracellular matrix from an intact porcine heart,” Tissue Engineering C, vol. 16, no. 3, pp. 525–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Sanger, J. Wang, Y. Fan, J. White, and J. M. Sanger, “Assembly and dynamics of myofibrils,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 858606, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. G. Bonnemann and N. G. Laing, “Myopathies resulting from mutations in sarcomeric proteins,” Current Opinion in Neurology, vol. 17, no. 5, pp. 529–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. N. G. Laing and K. J. Nowak, “When contractile proteins go bad: the sarcomere and skeletal muscle disease,” BioEssays, vol. 27, no. 8, pp. 809–822, 2005. View at Publisher · View at Google Scholar
  12. H. Morita, J. Seidman, and C. E. Seidman, “Genetic causes of human heart failure,” The Journal of Clinical Investigation, vol. 115, no. 3, pp. 518–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Brand-Saberi, “Genetic and epigenetic control of skeletal muscle development,” Annals of Anatomy, vol. 187, no. 3, pp. 199–207, 2005. View at Publisher · View at Google Scholar
  14. D. Rhee, J. M. Sanger, and J. W. Sanger, “The premyofibril: evidence for its role in myofibrillogenesis,” Cell Motility and the Cytoskeleton, vol. 28, no. 1, pp. 1–24, 1994. View at Google Scholar · View at Scopus
  15. J. M. Sanger and J. W. Sanger, “The dynamic Z bands of striated muscle cells,” Science Signaling, vol. 1, no. 32, p. pe37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. V. Pardo, J. D. Angelo Siliciano, and S. W. Craig, “A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 4 I, pp. 1008–1012, 1983. View at Google Scholar · View at Scopus
  17. J. C. Sparrow and F. Schock, “The initial steps of myofibril assembly: integrins pave the way,” Nature Reviews Molecular Cell Biology, vol. 10, no. 4, pp. 293–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. W. Sanger, S. Kang, C. C. Siebrands et al., “How to build a myofibril,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6–8, pp. 343–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. W. C. Rosser, M. Wick, D. M. Waldbillig, D. J. Wright, C. M. Farrar, and E. Bandman, “Expression of myosin heavy chain isoforms during development of domestic pigeon pectoralis muscle,” The International Journal of Developmental Biology, vol. 42, no. 5, pp. 653–661, 1998. View at Google Scholar · View at Scopus
  20. O. Agbulut, P. Noirez, F. Beaumont, and G. Butler-Browne, “Myosin heavy chain isoforms in postnatal muscle development of mice,” Biology of the Cell, vol. 95, no. 6, pp. 399–406, 2003. View at Publisher · View at Google Scholar
  21. E. Ehler and M. Gautel, “The sarcomere and sarcomerogenesis,” Advances in Experimental Medicine and Biology, vol. 642, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. F. T. van der Loop, P. F. van der Ven, D. O. Forst, M. Gautel, G. J. Van Eys, and F. C. Ramaekers, “Integration of titin into the sarcomeres of cultured differentiating human skeletal muscle cells,” European Journal of Cell Biology, vol. 69, no. 4, pp. 301–307, 1996. View at Google Scholar · View at Scopus
  23. P. F. van der Ven and D. O. Forst, “Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal muscle cells in vitro,” Cell Structure and Function, vol. 22, no. 1, pp. 163–171, 1997. View at Google Scholar · View at Scopus
  24. H. E. Huxley, “Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle,” Journal of Molecular Biology, vol. 7, pp. 281–308, 1963. View at Google Scholar
  25. S. G. Page and H. E. Huxley, “Filament lengths in striated muscle,” The Journal of Cell Biology, vol. 19, pp. 369–390, 1963. View at Google Scholar
  26. F. Liu, J. M. Barral, C. C. Bauer et al., “Assemblases and coupling proteins in thick filament assembly,” Cell Structure and Function, vol. 22, no. 1, pp. 155–162, 1997. View at Google Scholar · View at Scopus
  27. R. Srikakulam and D. A. Winkelmann, “Myosin II folding is mediated by a molecular chaperonin,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 27265–27273, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Chow, R. Srikakulam, Y. Chen, and D. A. Winkelmann, “Folding of the striated muscle myosin motor domain,” The Journal of Biological Chemistry, vol. 277, no. 39, pp. 36799–36807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. I. Levitsky, N. V. Khovorov, V. L. Shnyrov, N. S. Vedenkina, E. A. Permyakov, and B. F. Poglazov, “Domain structure of myosin subfragment-1. Selective denaturation of the 50 kDa segment,” FEBS Letters, vol. 264, no. 2, pp. 176–178, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Willis, J. C. Schisler, A. L. Portbury, and C. Patterson, “Build it up-Tear it down: protein quality control in the cardiac sarcomere,” Cardiovascular Research, vol. 81, no. 3, pp. 439–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. Barral, A. H. Hutagalung, A. Brinker, F. U. Hartl, and H. F. Epstein, “Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin,” Science, vol. 295, no. 5555, pp. 669–671, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Srikakulam and D. A. Winkelmann, “Chaperone-mediated folding and assembly of myosin in striated muscle,” Journal of Cell Science, vol. 117, no. 4, pp. 641–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Liu, R. Srikakulam, and D. A. Winkelmann, “Unc45 activates Hsp90-dependent folding of the myosin motor domain,” The Journal of Biological Chemistry, vol. 283, no. 19, pp. 13185–13193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. H. Krone, T. G. Evans, and S. R. Blechinger, “Heat shock gene expression and function during zebrafish embryogenesis,” Seminars in Cell and Developmental Biology, vol. 14, no. 5, pp. 267–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Etard, M. Behra, N. Fischer, D. Hutcheson, R. Geisler, and U. Strahle, “The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis,” Developmental Biology, vol. 308, no. 1, pp. 133–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Thisse, V. Heyer, A. Lux et al., “Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening,” Methods in Cell Biology, vol. 2004, no. 77, pp. 505–519, 2004. View at Google Scholar · View at Scopus
  37. G. L. Crawford and R. Horowits, “Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle,” Biophysical Reviews, vol. 3, no. 1, pp. 25–32, 2011. View at Google Scholar
  38. J. Kim, T. Lowe, and T. Hoppe, “Protein quality control gets muscle into shape,” Trends in Cell Biology, vol. 18, no. 6, pp. 264–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Dhume, S. Lu, and R. Horowits, “Targeted disruption of N-RAP gene function by RNA interference: a role for N-RAP in myofibril organization,” Cell Motility and the Cytoskeleton, vol. 63, no. 8, pp. 493–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Manisastry, K. J. Zaal, and R. Horowits, “Myofibril assembly visualized by imaging N-RAP, alpha-actinin, and actin in living cardiomyocytes,” Experimental Cell Research, vol. 315, no. 12, pp. 2126–2139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Grantham, L. W. Ruddock, A. Roobol, and M. J. Carden, “Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro,” Cell Stress & Chaperones, vol. 7, no. 3, pp. 235–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Siegers, T. Waldmann, M. R. Leroux et al., “Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system,” The EMBO Journal, vol. 18, no. 1, pp. 75–84, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Inagaki, T. Hayashi, T. Arimura et al., “α B-crystallin mutation in dilated cardiomyopathy,” Biochemical and Biophysical Research Communications, vol. 342, no. 2, pp. 379–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Golenhofen, A. Arbeiter, R. Koob, and D. Drenckhahn, “Ischemia-induced association of the stress protein αB-crystallin with I-band portion of cardiac titin,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 3, pp. 309–319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Wang, R. Klevitsky, W. Huang, J. Glasford, F. Li, and J. Robbins, “αB-crystallin modulates protein aggregation of abnormal desmin,” Circulation Research, vol. 93, no. 10, pp. 998–1005, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Djabali, B. De Nechaud, F. Landon, and M. M. Portier, “αB-crystallin interacts with intermediate filaments in response to stress,” Journal of Cell Science, vol. 110, no. 21, pp. 2759–2769, 1997. View at Google Scholar · View at Scopus
  47. B. Vogel, B. Meder, S. Just et al., “In-vivo characterization of human dilated cardiomyopathy genes in zebrafish,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 516–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Whiting, J. Wardale, and J. Trinick, “Does titin regulate the length of muscle thick filaments?” Journal of Molecular Biology, vol. 205, no. 1, pp. 263–268, 1989. View at Google Scholar · View at Scopus
  49. L. Tskhovrebova and J. Trinick, “Titin: properties and family relationships,” Nature Reviews Molecular Cell Biology, vol. 4, no. 9, pp. 679–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Miller, H. Musa, M. Gautel, and M. Peckham, “A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis,” Journal of Cell Science, vol. 116, no. 23, pp. 4811–4819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Musa, S. Meek, M. Gautel, D. Peddie, A. J. H. Smith, and M. Peckham, “Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation,” Journal of Cell Science, vol. 119, no. 20, pp. 4322–4331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Person, S. Kostin, K. Suzuki, S. Labeit, and J. Schaper, “Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture,” Journal of Cell Science, vol. 113, no. 21, pp. 3851–3859, 2000. View at Google Scholar · View at Scopus
  53. P. F. van der Ven, J. W. Bartsch, M. Gautel, H. Jockusch, and D. O. Furst, “A functional knock-out of titin results in defective myofibril assembly,” Journal of Cell Science, vol. 113, no. 8, pp. 1405–1414, 2000. View at Google Scholar · View at Scopus
  54. J. Peng, K. Raddatz, S. Labeit, H. Granzier, and M. Gotthardt, “Muscle atrophy in titin M-line deficient mice,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6–8, pp. 381–388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Peng, K. Raddatz, J. D. Molkentin et al., “Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region,” Circulation, vol. 115, no. 6, pp. 743–751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. K. T. Tokuyasu, “Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III. Generation of fasciae adherentes and costameres,” The Journal of Cell Biology, vol. 108, no. 1, pp. 43–53, 1989. View at Google Scholar · View at Scopus
  57. A. B. Fulton and C. Alftine, “Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle,” Cell Structure and Function, vol. 22, no. 1, pp. 51–58, 1997. View at Google Scholar · View at Scopus
  58. A. B. Fulton and T. L'Ecuyer, “Cotranslational assembly of some cytoskeletal proteins: implications and prospects,” Journal of Cell Science, vol. 105, no. 4, pp. 867–871, 1993. View at Google Scholar · View at Scopus
  59. E. M. Puchner, A. Alexandrovich, L. K. Ay et al., “Mechanoenzymatics of titin kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13385–13390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Duan and P. J. Gallagher, “Dependence of myoblast fusion on a cortical actin wall and nonmuscle myosin IIA,” Developmental Biology, vol. 325, no. 2, pp. 374–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Mugita, Y. Honda, H. Nakamura et al., “The involvement of proteasome in myogenic differentiation of murine myocytes and human rhabdomyosarcoma cells,” International Journal of Molecular Medicine, vol. 3, no. 2, pp. 127–137, 1999. View at Google Scholar · View at Scopus
  62. S. S. Kim, S. Rhee, K. H. Lee et al., “Inhibitors of the proteasome block the myogenic differentiation of rat L6 myoblasts,” FEBS Letters, vol. 433, no. 1-2, pp. 47–50, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Hoppe, G. Cassata, J. M. Barral et al., “Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans,” Cell, vol. 118, no. 3, pp. 337–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. L. Landsverk, S. Li, A. H. Hutagalung et al., “The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans,” The Journal of Cell Biology, vol. 177, no. 2, pp. 205–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. D. I. Lin, O. Barbash, K. G. S. Kumar et al., “Phosphorylation-dependent ubiquitination of cyclin D1 by the sCFFBX4-αB crystallin complex,” Molecular Cell, vol. 24, no. 3, pp. 355–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. S. R. Ghosh and I. A. Hope, “Determination of the mobility of novel and established Caenorhabditis elegans sarcomeric proteins in vivo,” European Journal of Cell Biology, vol. 89, no. 6, pp. 437–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Holtzer, T. Hijikata, Z. X. Lin et al., “Independent assembly of 1.6 μm long bipolar MHC filaments and I-Z-I bodies,” Cell Structure and Function, vol. 22, no. 1, pp. 83–93, 1997. View at Google Scholar · View at Scopus
  68. A. Du, J. M. Sanger, and J. W. Sanger, “Cardiac myofibrillogenesis inside intact embryonic hearts,” Developmental Biology, vol. 318, no. 2, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Sanger, B. Mittal, M. B. Pochapin, and J. W. Sanger, “Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin,” The Journal of Cell Biology, vol. 102, no. 6, pp. 2053–2066, 1986. View at Google Scholar · View at Scopus
  70. J. W. Sanger, B. Mittal, and J. M. Sanger, “Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins,” The Journal of Cell Biology, vol. 98, no. 3, pp. 825–833, 1984. View at Google Scholar · View at Scopus
  71. Y. Soeno, Y. Shimada, and T. Obinata, “BDM (2, 3-butanedione monoxime), an inhibitor of myosin actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture,” Cell and Tissue Research, vol. 295, no. 2, pp. 307–316, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Kagawa, N. Sato, and T. Obinata, “Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture,” Zoological Science, vol. 23, no. 11, pp. 969–975, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. P. G. De Deyne, “Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation,” The American Journal of Physiology, vol. 279, no. 6, pp. C1801–C1811, 2000. View at Google Scholar · View at Scopus
  74. W. W. Shakp, D. G. Simpson, T. K. Borg, A. M. Samarel, and L. Terracio, “Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes,” The American Journal of Physiology, vol. 273, no. 2, part 2, pp. H546–H556, 1997. View at Google Scholar · View at Scopus
  75. A. Skwarek-Maruszewska, P. Hotulainen, P. K. Mattila, and P. Lappalainen, “Contractility-dependent actin dynamics in cardiomyocyte sarcomeres,” Journal of Cell Science, vol. 122, no. 12, pp. 2119–2126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. B. Ferrari, K. Ribbeck, D. J. Hagler, and N. C. Spitzer, “A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes,” The Journal of Cell Biology, vol. 141, no. 6, pp. 1349–1356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. M. B. Ferrari, J. Rohrbough, and N. C. Spitzer, “Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes,” Developmental Biology, vol. 178, no. 2, pp. 484–497, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Du, J. M. Sanger, K. K. Linask, and J. W. Sanger, “Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm,” Developmental Biology, vol. 257, no. 2, pp. 382–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Fujita, T. Nedachi, and M. Kanzaki, “Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes,” Experimental Cell Research, vol. 313, no. 9, pp. 1853–1865, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. N. T. Swailes, M. Colegrave, P. J. Knight, and M. Peckham, “Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse,” Journal of Cell Science, vol. 119, no. 17, pp. 3561–3570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. C. Sandquist, K. I. Swenson, K. A. DeMali, K. Burridge, and A. R. Means, “Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration,” The Journal of Biological Chemistry, vol. 281, no. 47, pp. 35873–35883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. A. N. Tullio, D. Accili, V. J. Ferrans et al., “Nonmuscle myosin II-B is required for normal development of the mouse heart,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12407–12412, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Bao, X. Ma, C. Liu, and R. S. Adelstein, “Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice,” The Journal of Biological Chemistry, vol. 282, no. 30, pp. 22102–22111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Golomb, X. Ma, S. S. Jana et al., “Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family,” The Journal of Biological Chemistry, vol. 279, no. 4, pp. 2800–2808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Wells, D. Coles, A. Entwistle, and M. Peckham, “Myogenic cells express multiple myosin isoforms,” Journal of Muscle Research and Cell Motility, vol. 18, no. 5, pp. 501–515, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. P. E. Hoppe and R. H. Waterston, “Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans,” The Journal of Cell Biology, vol. 135, no. 2, pp. 371–382, 1996. View at Publisher · View at Google Scholar · View at Scopus
  87. P. E. Hoppe and R. H. Waterston, “A region of the myosin rod important for interaction with paramyosin in Caenorhabditis elegans striated muscle,” Genetics, vol. 156, no. 2, pp. 631–643, 2000. View at Google Scholar · View at Scopus
  88. I. N. Maruyama, D. M. Miller, and S. Brenner, “Myosin heavy chain gene amplification as a suppressor mutation in Caenorhabditis elegans,” Molecular & General Genetics, vol. 219, no. 1-2, pp. 113–118, 1989. View at Google Scholar · View at Scopus
  89. A. J. Engler, M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher, “Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments,” The Journal of Cell Biology, vol. 166, no. 6, pp. 877–887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. X. Lin, S. Holtzer, T. Schultheiss et al., “Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes,” The Journal of Cell Biology, vol. 108, no. 6, pp. 2355–2367, 1989. View at Google Scholar · View at Scopus
  91. D. E. Discher, P. Janmey, and Y. L. Wang, “Tissue cells feel and respond to the stiffness of their substrate,” Science, vol. 310, no. 5751, pp. 1139–1143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. V. L. Funanage, S. M. Smith, and M. A. Minnich, “Entactin promotes adhesion and long-term maintenance of cultured regenerated skeletal myotubes,” Journal of Cellular Physiology, vol. 150, no. 2, pp. 251–257, 1992. View at Google Scholar · View at Scopus
  93. A. J. García, M. D. Vega, and D. Boettiger, “Modulation of cell proliferation and differentiation through substrate — dependent changes in fibronectin conformation,” Molecular Biology of the Cell, vol. 10, no. 3, pp. 785–798, 1999. View at Google Scholar · View at Scopus
  94. R. F. Foster, J. M. Thompson, and S. J. Kaufman, “A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using antidesmin and anti-BrdUrd monoclonal antibodies,” Developmental Biology, vol. 122, no. 1, pp. 11–20, 1987. View at Google Scholar · View at Scopus
  95. M. T. Lam, S. Sim, X. Zhu, and S. Takayama, “The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes,” Biomaterials, vol. 27, no. 24, pp. 4340–4347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. N. F. Huang, S. Patel, R. G. Thakar et al., “Myotube assembly on nanofibrous and micropatterned polymers,” Nano Letters, vol. 6, no. 3, pp. 537–542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Shimizu, H. Fujita, and E. Nagamori, “Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives,” Biotechnology and Bioengineering, vol. 103, no. 3, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. T. A. Marino, L. Kuseryk, and I. K. Lauva, “Role of contraction in the structure and growth of neonatal rat cardiocytes,” The American Journal of Physiology, vol. 253, no. 6, part 2, pp. H1391–H1399, 1987. View at Google Scholar · View at Scopus
  99. N. Q. Balaban, U. S. Schwarz, D. Riveline et al., “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates,” Nature Cell Biology, vol. 3, no. 5, pp. 466–472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. D. M. Helfman, E. T. Levy, C. Berthier et al., “Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions,” Molecular Biology of the Cell, vol. 10, no. 10, pp. 3097–3112, 1999. View at Google Scholar · View at Scopus
  101. D. Riveline, E. Zamir, N. Q. Balaban et al., “Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism,” The Journal of Cell Biology, vol. 153, no. 6, pp. 1175–1185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. B. A. Danowski, K. Imanaka-Yoshida, J. M. Sanger, and J. W. Sanger, “Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes,” The Journal of Cell Biology, vol. 118, no. 6, pp. 1411–1419, 1992. View at Google Scholar · View at Scopus
  103. J. J. Zoeller, A. McQuillan, J. Whitelock, S. Y. Ho, and R. V. Iozzo, “A central function for perlecan in skeletal muscle and cardiovascular development,” The Journal of Cell Biology, vol. 181, no. 2, pp. 381–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. R. D. Cohn, U. Mayer, G. Saher et al., “Secondary reduction of α7B integrin in laminin α2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle,” Journal of the Neurological Sciences, vol. 163, no. 2, pp. 140–152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. J. E. Rooney, J. V. Welser, M. A. Dechert, N. L. Flintoff-Dye, S. J. Kaufman, and D. J. Burkin, “Severe muscular dystrophy in mice that lack dystrophin and α7 integrin,” Journal of Cell Science, vol. 119, no. 11, pp. 2185–2195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. K. Hayashi, F. L. Chou, E. Engvall et al., “Mutations in the integrin α7 gene cause congenital myopathy,” Nature Genetics, vol. 19, no. 1, pp. 94–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. J. W. Bloor and N. H. Brown, “Genetic analysis of the Drosophila α(PS2) integrin subunit reveals discrete adhesive, morphogenetic and sarcomeric functions,” Genetics, vol. 148, no. 3, pp. 1127–1142, 1998. View at Google Scholar · View at Scopus
  108. M. C. Hresko, B. D. Williams, and R. H. Waterston, “Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans,” The Journal of Cell Biology, vol. 124, no. 4, pp. 491–506, 1994. View at Google Scholar · View at Scopus
  109. T. Volk, L. I. Fessler, and J. H. Fessler, “A role for integrin in the formation of sarcomeric cytoarchitecture,” Cell, vol. 63, no. 3, pp. 525–536, 1990. View at Publisher · View at Google Scholar · View at Scopus
  110. K. A. DeMali, C. A. Barlow, and K. Burridge, “Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion,” The Journal of Cell Biology, vol. 159, no. 5, pp. 881–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Dong, D. Pruyne, and A. Bretscher, “Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast,” The Journal of Cell Biology, vol. 161, no. 6, pp. 1081–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Butler, C. Gao, A. T. Mersich, and S. D. Blystone, “Purified integrin adhesion complexes exhibit actin-polymerization activity,” Current Biology, vol. 16, no. 3, pp. 242–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Liu and Z. Li, “Endoplasmic reticulum HSP90bl (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin,” Blood, vol. 112, no. 4, pp. 1223–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Aoyagi, N. Fujita, and T. Tsuruo, “Stabilization of integrin-linked kinase by binding to Hsp90,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 1061–1068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Schwander, M. Leu, M. Stumm et al., “β1 integrins regulate myoblast fusion and sarcomere assembly,” Developmental Cell, vol. 4, no. 5, pp. 673–685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. W. Ao and D. Pilgrim, “Caenorhabditis elegans UNC-45 is a component of muscle thick filaments and colocalizes with myosin heavy chain B, but not myosin heavy chain A,” The Journal of Cell Biology, vol. 148, no. 2, pp. 375–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. L. Venolia, W. Ao, S. Kim, C. Kim, and D. Pilgrim, “unc-45 gene of Caenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein,” Cell Motility and the Cytoskeleton, vol. 42, no. 3, pp. 163–177, 1999. View at Google Scholar · View at Scopus
  118. M. G. Price, M. L. Landsverk, J. M. Barral, and H. F. Epstein, “Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific functions,” Journal of Cell Science, vol. 115, no. 21, pp. 4013–4023, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. M. J. Anderson, V. N. Pham, A. M. Vogel, B. M. Weinstein, and B. L. Roman, “Loss of unc45a precipitates arteriovenous shunting in the aortic arches,” Developmental Biology, vol. 318, no. 2, pp. 258–267, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. S. L. Wohlgemuth, B. D. Crawford, and D. B. Pilgrim, “The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish,” Developmental Biology, vol. 303, no. 2, pp. 483–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. H. Hutagalung, M. L. Landsverk, M. G. Price, and H. F. Epstein, “The UCS family of myosin chaperones,” Journal of Cell Science, vol. 115, no. 21, pp. 3983–3990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. R. Srikakulam, L. Liu, and D. A. Winkelmann, “Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain,” Plos One, vol. 3, no. 5, Article ID e2137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. S. J. Du, H. Li, Y. Bian, and Y. Zhong, “Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 554–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. T. A. Hawkins, A. P. Haramis, C. Etard et al., “The ATPase-dependent chaperoning activity of Hsp90a regulates thick filament formation and integration during skeletal muscle myofibrillogenesis,” Development, vol. 135, no. 6, pp. 1147–1156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. M. P. Mayer, “Gymnastics of molecular chaperones,” Molecular Cell, vol. 39, no. 3, pp. 321–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. K. A. Krukenberg, T. O. Street, L. A. Lavery, and D. A. Agard, “Conformational dynamics of the molecular chaperone Hsp90,” Quarterly Reviews of Biophysics, vol. 44, no. 2, pp. 229–255, 2011. View at Publisher · View at Google Scholar
  127. T. J. Geach and L. B. Zimmerman, “Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker,” BMC Developmental Biology, vol. 10, article 75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Etard, U. Roostalu, and U. Strahle, “Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril,” The Journal of Cell Biology, vol. 180, no. 6, pp. 1163–1175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Etard, U. Roostalu, and U. Strahle, “Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos,” The Journal of Cell Biology, vol. 189, no. 3, pp. 527–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. G. C. Melkani, C. F. Lee, A. Cammarato, and S. I. Bernstein, “Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase,” Biochemical and Biophysical Research Communications, vol. 396, no. 2, pp. 317–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. P. C. Janiesch, J. Kim, J. Mouysset et al., “The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy,” Nature Cell Biology, vol. 9, no. 4, pp. 379–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. M. G. Walker, “Pharmaceutical target identification by gene expression analysis,” Mini Reviews in Medicinal Chemistry, vol. 1, no. 2, pp. 197–205, 2001. View at Google Scholar · View at Scopus
  133. E. P. Bernick, P. J. Zhang, and S. Du, “Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos,” BMC Cell Biology, vol. 11, article 70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. D. M. Miller III, I. Ortiz, G. C. Berliner, and H. F. Epstein, “Differential localization of two myosins within nematode thick filaments,” Cell, vol. 34, no. 2, pp. 477–490, 1983. View at Google Scholar · View at Scopus
  135. A. Fire and R. H. Waterston, “Proper expression of myosin genes in transgenic nematodes,” The EMBO Journal, vol. 8, no. 11, pp. 3419–3428, 1989. View at Google Scholar · View at Scopus
  136. T. Kachur, W. Ao, J. Berger, and D. Pilgrim, “Maternal UNC-45 is involved in cytokinesis and colocalizes with non-muscle myosin in the early Caenorhabditis elegans embryo,” Journal of Cell Science, vol. 117, no. 22, pp. 5313–5321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. C. F. Lee, G. C. Melkani, Q. Yu et al., “Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability,” Journal of Cell Science, vol. 124, no. 5, pp. 699–705, 2011. View at Publisher · View at Google Scholar
  138. T. M. Kachur, A. Audhya, and D. B. Pilgrim, “UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans,” Developmental Biology, vol. 314, no. 2, pp. 287–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. C. F. Lee, A. V. Hauenstein, J. K. Fleming et al., “X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster,” Structure, vol. 19, no. 3, pp. 397–408, 2011. View at Publisher · View at Google Scholar
  140. H. Shi and G. Blobel, “UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21382–21387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. J. W. Bloor and D. P. Kiehart, “Zipper nonmuscle myosin-II functions downstream of PS2 integrin in Drosophila myogenesis and is necessary for myofibril formation,” Developmental Biology, vol. 239, no. 2, pp. 215–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. B. D. Williams and R. H. Waterston, “Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations,” The Journal of Cell Biology, vol. 124, no. 4, pp. 475–490, 1994. View at Google Scholar · View at Scopus
  143. S. N. Gettner, C. Kenyon, and L. F. Reichardt, “Characterization of βpat-3 heterodimers, a family of essential integrin receptors in C. elegans,” The Journal of Cell Biology, vol. 129, no. 4, pp. 1127–1141, 1995. View at Google Scholar · View at Scopus
  144. L. Etheridge, P. Diiorio, and C. G. Sagerstrom, “A zebrafish unc-45-related gene expressed during muscle development,” Developmental Dynamics, vol. 224, no. 4, pp. 457–460, 2002. View at Publisher · View at Google Scholar
  145. J. L. Myhre and D. B. Pilgrim, “Cellular differentiation in primary cell cultures from single zebrafish embryos as a model for the study of myogenesis,” Zebrafish, vol. 7, no. 3, pp. 255–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. K. Jani and F. Schock, “Zasp is required for the assembly of functional integrin adhesion sites,” The Journal of Cell Biology, vol. 179, no. 7, pp. 1583–1597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Rui, J. Bai, and N. Perrimon, “Sarcomere formation occurs by the assembly of multiple latent protein complexes,” Plos Genetics, vol. 6, no. 11, Article ID e1001208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Sato, H. C. Probst, R. Tatsumi, Y. Ikeuchi, M. S. Neuberger, and C. Rada, “Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy,” The Journal of Biological Chemistry, vol. 285, no. 10, pp. 7111–7118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. W. Ni, A. H. Hutagalung, S. Li, and H. F. Epstein, “The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans,” Journal of Cell Science, vol. 124, no. 18, pp. 3164–3173, 2011. View at Publisher · View at Google Scholar