Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2012 (2012), Article ID 940405, 18 pages
http://dx.doi.org/10.1155/2012/940405
Review Article

Genetic and Biochemical Alterations in Non-Small Cell Lung Cancer

1Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, USA
2Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA

Received 9 May 2012; Accepted 9 July 2012

Academic Editor: Eun-Kyoung Yim Breuer

Copyright © 2012 Jackie L. Johnson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sun, J. H. Schiller, and A. F. Gazdar, “Lung cancer in never smokers—a different disease,” Nature Reviews Cancer, vol. 7, no. 10, pp. 778–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. S. Cox, M. M. Clark, J. R. Jett et al., “Change in smoking status after spiral chest computed tomography scan screening,” Cancer, vol. 98, no. 11, pp. 2495–2501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. W. V. Ark, L. J. DiNardo, and D. S. Oliver, “Factors affecting smoking cessation in patients with head and neck cancer,” The Laryngoscope, vol. 107, no. 7, pp. 888–892, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Chiappino and E. Pisani, “Prostate diseases of occupational origin,” Medicina del Lavoro, vol. 93, no. 2, pp. 67–72, 2002. View at Google Scholar · View at Scopus
  7. J. Subramanian and R. Govindan, “Lung cancer in never smokers: a review,” Journal of Clinical Oncology, vol. 25, no. 5, pp. 561–570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Subramanian and R. Govindan, “Lung cancer in “never-smokers”: a unique entity,” Oncology, vol. 24, no. 1, pp. 29–35, 2010. View at Google Scholar · View at Scopus
  9. J. Subramanian and R. Govindan, “Molecular genetics of lung cancer in people who have never smoked,” The Lancet Oncology, vol. 9, no. 7, pp. 676–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. J. Lee, J. H. Kim, S. K. Kim et al., “Lung cancer in never smokers: change of a mindset in the molecular era,” Lung Cancer, vol. 72, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. G. Shields, “Molecular epidemiology of smoking and lung cancer,” Oncogene, vol. 21, no. 45, pp. 6870–6876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Soh, S. Toyooka, S. Ichihara et al., “Sequential molecular changes during multistage pathogenesis of small peripheral adenocarcinomas of the lung,” Journal of Thoracic Oncology, vol. 3, no. 4, pp. 340–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Rudin, E. Avila-Tang, C. C. Harris et al., “Lung cancer in never smokers: molecular profiles and therapeutic implications,” Clinical Cancer Research, vol. 15, no. 18, pp. 5646–5661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Samet, E. Avila-Tang, P. Boffetta et al., “Lung cancer in never smokers: clinical epidemiology and environmental risk factors,” Clinical Cancer Research, vol. 15, no. 18, pp. 5626–5645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Le Calvez, A. Mukeria, J. D. Hunt et al., “TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers,” Cancer Research, vol. 65, no. 12, pp. 5076–5083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Sekido, K. M. Fong, and J. D. Minna, “Molecular genetics of lung cancer,” Annual Review of Medicine, vol. 54, pp. 73–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Horn and W. Pao, “EML4-ALK: honing in on a new target in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 27, no. 26, pp. 4232–4235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. Koivunen, C. Mermel, K. Zejnullahu et al., “EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer,” Clinical Cancer Research, vol. 14, no. 13, pp. 4275–4283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. L. Choi, K. Takeuchi, M. Soda et al., “Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer,” Cancer Research, vol. 68, no. 13, pp. 4971–4976, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Soda, Y. L. Choi, M. Enomoto et al., “Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer,” Nature, vol. 448, no. 7153, pp. 561–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kohno, H. Ichikawa, Y. Totoki et al., “KIF5B-RET fusions in lung adenocarcinoma,” Nature Medicine, vol. 18, no. 3, pp. 375–377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. S. Ju, W. C. Lee, J. Y. Shin et al., “A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing,” Genome Research, vol. 22, no. 3, pp. 436–445, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Lipson, M. Capelletti, R. Yelensky et al., “Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies,” Nature Medicine, vol. 18, no. 3, pp. 382–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Beasley, E. Brambilla, and W. D. Travis, “The 2004 World Health Organization classification of lung tumors,” Seminars in Roentgenology, vol. 40, no. 2, pp. 90–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Mao, L. X. Qiu, R. Y. Liao et al., “KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies,” Lung Cancer, vol. 69, no. 3, pp. 272–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. H. Kirsten and L. A. Mayer, “Morphologic responses to a murine erythroblastosis virus,” Journal of the National Cancer Institute, vol. 39, no. 2, pp. 311–335, 1967. View at Google Scholar · View at Scopus
  28. J. J. Harvey, “An unidentified virus which causes the rapid production of tumours in mice,” Nature, vol. 204, no. 4963, pp. 1104–1105, 1964. View at Publisher · View at Google Scholar · View at Scopus
  29. A. D. Cox and C. J. Der, “Ras history: the saga continues,” Small GTPases, vol. 1, no. 1, pp. 2–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. W. Ellis, D. Defeo, T. Y. Shih et al., “The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes,” Nature, vol. 292, no. 5823, pp. 506–511, 1981. View at Google Scholar · View at Scopus
  31. C. Shih, L. C. Padhy, M. Murray, and R. A. Weinberg, “Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts,” Nature, vol. 290, no. 5803, pp. 261–264, 1981. View at Google Scholar · View at Scopus
  32. S. Pulciani, E. Santos, A. V. Lauver, L. K. Long, and M. Barbacid, “Transforming genes in human tumors,” Journal of Cellular Biochemistry, vol. 20, no. 1, pp. 51–61, 1982. View at Google Scholar · View at Scopus
  33. S. Pulciani, E. Santos, A. V. Lauver, L. K. Long, K. C. Robbins, and M. Barbacid, “Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 9, pp. 2845–2849, 1982. View at Google Scholar · View at Scopus
  34. M. Goldfarb, K. Shimizu, M. Perucho, and M. Wigler, “Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells,” Nature, vol. 296, no. 5856, pp. 404–409, 1982. View at Google Scholar · View at Scopus
  35. K. Shimizu, M. Goldfarb, M. Perucho, and M. Wigler, “Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 2, pp. 383–387, 1983. View at Google Scholar · View at Scopus
  36. A. Hall, C. J. Marshall, N. K. Spurr, and R. A. Weiss, “Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1,” Nature, vol. 303, no. 5916, pp. 396–400, 1983. View at Google Scholar · View at Scopus
  37. J. Colicelli, “Human RAS superfamily proteins and related GTPases,” Science's STKE, vol. 2004, no. 250, p. RE13, 2004. View at Google Scholar · View at Scopus
  38. J. L. Bos, “Ras oncogenes in human cancer: a review,” Cancer Research, vol. 49, no. 17, pp. 4682–4689, 1989. View at Google Scholar · View at Scopus
  39. S. Pells, M. Divjak, P. Romanowski et al., “Developmentally-regulated expression of murine K-ras isoforms,” Oncogene, vol. 15, no. 15, pp. 1781–1786, 1997. View at Google Scholar · View at Scopus
  40. Y. Wang, M. You, and Y. Wang, “Alternative splicing of the K-ras gene in mouse tissues and cell lines,” Experimental Lung Research, vol. 27, no. 3, pp. 255–267, 2001. View at Google Scholar · View at Scopus
  41. N. Mitin, K. L. Rossman, and C. J. Der, “Signaling interplay in Ras superfamily function,” Current Biology, vol. 15, no. 14, pp. R563–R574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. B. Vojtek and C. J. Der, “Increasing complexity of the Ras signaling pathway,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 19925–19928, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. G. F. Xu, P. O'Connell, D. Viskochil et al., “The neurofibromatosis type 1 gene encodes a protein related to GAP,” Cell, vol. 62, no. 3, pp. 599–608, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. P. J. Casey, P. A. Solski, C. J. Der, and J. E. Buss, “p21ras is modified by a farnesyl isoprenoid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 21, pp. 8323–8327, 1989. View at Google Scholar · View at Scopus
  45. S. M. Sebti, “Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy,” Cancer Cell, vol. 7, no. 4, pp. 297–300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Sebti and A. D. Hamilton, “Inhibitors of prenyl transferases,” Current Opinion in Oncology, vol. 9, no. 6, pp. 557–561, 1997. View at Google Scholar · View at Scopus
  47. M. Nigam, C. M. Seong, Y. Qian, A. D. Hamilton, and S. M. Sebti, “Potent inhibition of human tumor p21ras farnesyltransferase by A1A2-lacking p21ras CA1A2X peptidomimetics,” Journal of Biological Chemistry, vol. 268, no. 28, pp. 20695–20698, 1993. View at Google Scholar · View at Scopus
  48. N. Berndt, A. D. Hamilton, and S. M. Sebti, “Targeting protein prenylation for cancer therapy,” Nature Reviews Cancer, vol. 11, no. 11, pp. 775–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Rodenhuis, M. L. van de Wetering, W. J. Mooi, S. G. Evers, N. van Zandwijk, and J. L. Bos, “Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung,” New England Journal of Medicine, vol. 317, no. 15, pp. 929–935, 1987. View at Google Scholar · View at Scopus
  50. E. Santos, D. Martin Zanca, E. P. Reddy, M. A. Pierotti, G. Della Porta, and M. Barbacid, “Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient,” Science, vol. 223, no. 4637, pp. 661–664, 1984. View at Google Scholar · View at Scopus
  51. C. J. Tabin, S. M. Bradley, C. I. Bargmann et al., “Mechanism of activation of a human oncogene,” Nature, vol. 300, no. 5888, pp. 143–149, 1982. View at Google Scholar · View at Scopus
  52. F. Al-Mulla and E. M. MacKenzie, “Differences in vitro invasive capacity induced by differences in Ki-Ras protein mutations,” Journal of Pathology, vol. 195, no. 5, pp. 549–556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Mascaux, N. Iannino, B. Martin et al., “The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis,” British Journal of Cancer, vol. 92, no. 1, pp. 131–139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. T. Baines, D. Xu, and C. J. Der, “Inhibition of Ras for cancer treatment: the search continues,” Future Medicinal Chemistry, vol. 3, no. 14, pp. 1787–1808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. M. Jackman, V. A. Miller, L. A. Cioffredi et al., “Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials,” Clinical Cancer Research, vol. 15, no. 16, pp. 5267–5273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Johnson, K. Mercer, D. Greenbaum et al., “Somatic activation of the K-ras oncogene causes early onset lung cancer in mice,” Nature, vol. 410, no. 6832, pp. 1111–1116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Meylan, A. L. Dooley, D. M. Feldser et al., “Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma,” Nature, vol. 462, no. 7269, pp. 104–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. G. T. Stathopoulos, T. P. Sherrill, D. S. Cheng et al., “Epithelial NF-κB activation promotes urethane-induced lung carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18514–18519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. D. A. Barbie, P. Tamayo, J. S. Boehm et al., “Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1,” Nature, vol. 462, no. 7269, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Puyol, A. Martín, P. Dubus et al., “A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma,” Cancer Cell, vol. 18, no. 1, pp. 63–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Brambilla and A. Gazdar, “Pathogenesis of lung cancer signalling pathways: roadmap for therapies,” European Respiratory Journal, vol. 33, no. 6, pp. 1485–1497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. R. B. Blasco, S. Francoz, D. Santamaría et al., “C-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma,” Cancer Cell, vol. 19, no. 5, pp. 652–663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. J. L. Marks, Y. Gong, D. Chitale et al., “Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma,” Cancer Research, vol. 68, no. 14, pp. 5524–5528, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. G. A. Otterson, R. A. Kratzke, A. Coxon, Y. W. Kim, and F. J. Kaye, “Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB,” Oncogene, vol. 9, no. 11, pp. 3375–3378, 1994. View at Google Scholar · View at Scopus
  65. R. Sachse, Y. Murakami, M. Shiraishi, K. Hayashi, and T. Sekiya, “DNA aberrations at the retinoblastoma gene locus in human squamous cell carcinomas of the lung,” Oncogene, vol. 9, no. 1, pp. 39–47, 1994. View at Google Scholar · View at Scopus
  66. J. W. Harbour, S. L. Lai, J. Whang-Peng, A. F. Gazdar, J. D. Minna, and F. J. Kaye, “Abnormalities in structure and expression of the human retinoblastoma gene in SCLC,” Science, vol. 241, no. 4863, pp. 353–357, 1988. View at Google Scholar · View at Scopus
  67. S. A. Henley and F. A. Dick, “The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle,” Cell Division, vol. 7, p. 10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Wang, R. N. Ghosh, and S. P. Chellappan, “Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation,” Molecular and Cellular Biology, vol. 18, no. 12, pp. 7487–7498, 1998. View at Google Scholar · View at Scopus
  69. P. Dasgupta, J. Sun, S. Wang et al., “Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis,” Molecular and Cellular Biology, vol. 24, no. 21, pp. 9527–9541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Dasgupta, S. Rastogi, S. Pillai et al., “Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb-Raf-1 pathways,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2208–2217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Kinkade, P. Dasgupta, A. Carie et al., “A small molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angiogenesis, and growth of human tumor xenografts in nude mice,” Cancer Research, vol. 68, no. 10, pp. 3810–3818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Kinkade, P. Dasgupta, and S. Chellappan, “The ABCs of targeting Raf: novel approaches to cancer therapy,” Current Cancer Therapy Reviews, vol. 2, no. 4, pp. 305–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. R. K. Davis and S. Chellappan, “Disrupting the Rb-Raf-1 interaction: a potential therapeutic target for cancer,” Drug News and Perspectives, vol. 21, no. 6, pp. 331–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. V. M. Ho, B. E. Schaffer, A. N. Karnezis, K. S. Park, and J. Sage, “The retinoblastoma gene Rb and its family member p130 suppress lung adenocarcinoma induced by oncogenic K-Ras,” Oncogene, vol. 28, no. 10, pp. 1393–1399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Khazaie, V. Schirrmacher, and R. B. Lichtner, “EGF receptor in neoplasia and metastasis,” Cancer and Metastasis Reviews, vol. 12, no. 3-4, pp. 255–274, 1993. View at Google Scholar · View at Scopus
  76. E. K. Rowinsky, “The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors,” Annual Review of Medicine, vol. 55, pp. 433–457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. F. R. Hirsch, M. Varella-Garcia, P. A. Bunn Jr. et al., “Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis,” Journal of Clinical Oncology, vol. 21, no. 20, pp. 3798–3807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. A. F. Gazdar and J. D. Minna, “Deregulated EGFR signaling during lung cancer progression: mutations, amplicons, and autocrine loops,” Cancer Prevention Research, vol. 1, no. 3, pp. 156–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. A. Forbes, G. Bhamra, S. Bamford et al., “The catalogue of somatic mutations in cancer (COSMIC),” Current Protocols in Human Genetics, no. 57, pp. 10.11.1–10.11.26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Pao, V. Miller, M. Zakowski et al., “EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13306–13311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Marchetti, C. Martella, L. Felicioni et al., “EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment,” Journal of Clinical Oncology, vol. 23, no. 4, pp. 857–865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Mitsudomi and Y. Yatabe, “Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer,” Cancer Science, vol. 98, no. 12, pp. 1817–1824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Mitsudomi and Y. Yatabe, “Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer,” FEBS Journal, vol. 277, no. 2, pp. 301–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Shigematsu, L. Lin, T. Takahashi et al., “Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers,” Journal of the National Cancer Institute, vol. 97, no. 5, pp. 339–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. S. V. Sharma, D. W. Bell, J. Settleman, and D. A. Haber, “Epidermal growth factor receptor mutations in lung cancer,” Nature Reviews Cancer, vol. 7, no. 3, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. G. R. Oxnard, M. E. Arcila, J. Chmielecki, M. Ladanyi, V. A. Miller, and W. Pao, “New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosinekinase inhibitors in lung cancer,” Clinical Cancer Research, vol. 17, no. 17, pp. 5530–5537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Pao, V. A. Miller, K. A. Politi et al., “Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain,” PLoS Medicine, vol. 2, no. 3, p. e73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. N. Balak, Y. Gong, G. J. Riely et al., “Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors,” Clinical Cancer Research, vol. 12, no. 21, pp. 6494–6501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. M. E. Gorre, M. Mohammed, K. Ellwood et al., “Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification,” Science, vol. 293, no. 5531, pp. 876–880, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Vikis, M. Sato, M. James et al., “EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity,” Cancer Research, vol. 67, no. 10, pp. 4665–4670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. K. S. H. Nguyen, S. Kobayashi, and D. B. Costa, “Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway,” Clinical Lung Cancer, vol. 10, no. 4, pp. 281–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Cappuzzo, L. Toschi, I. Domenichini et al., “HER3 genomic gain and sensitivity to gefitinib in advanced non-small-cell lung cancer patients,” British Journal of Cancer, vol. 93, no. 12, pp. 1334–1340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Cappuzzo, M. Varella-Garcia, H. Shigematsu et al., “Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients,” Journal of Clinical Oncology, vol. 23, no. 22, pp. 5007–5018, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. W. Pao, T. Y. Wang, G. J. Riely et al., “KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib,” PLoS Medicine, vol. 2, no. 1, p. e17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. D. A. Eberhard, B. E. Johnson, L. C. Amler et al., “Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib,” Journal of Clinical Oncology, vol. 23, no. 25, pp. 5900–5909, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Pao and J. Chmielecki, “Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer,” Nature Reviews Cancer, vol. 10, no. 11, pp. 760–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Politi, M. F. Zakowski, P. D. Fan, E. A. Schonfeld, W. Pao, and H. E. Varmus, “Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors,” Genes and Development, vol. 20, no. 11, pp. 1496–1510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Taguchi, K. Politi, S. J. Pitteri et al., “Lung cancer signatures in plasma based on proteome profiling of mouse tumor models,” Cancer Cell, vol. 20, no. 3, pp. 289–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. S. W. Morris, C. Naeve, P. Mathew et al., “ALK the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK),” Oncogene, vol. 14, no. 18, pp. 2175–2188, 1997. View at Google Scholar · View at Scopus
  100. K. Takeuchi, M. Soda, Y. Togashi et al., “RET, ROS1 and ALK fusions in lung cancer,” Nature Medicine, vol. 18, no. 3, pp. 378–381, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Takeuchi, Y. L. Choi, Y. Togashi et al., “KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer,” Clinical Cancer Research, vol. 15, no. 9, pp. 3143–3149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Togashi, M. Soda, S. Sakata et al., “KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only,” PLoS ONE, vol. 7, no. 2, Article ID e31323, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Rikova, A. Guo, Q. Zeng et al., “Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in lung cancer,” Cell, vol. 131, no. 6, pp. 1190–1203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Soda, S. Takada, K. Takeuchi et al., “A mouse model for EML4-ALK-positive lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19893–19897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Chen, T. Sasaki, X. Tan et al., “Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene,” Cancer Research, vol. 70, no. 23, pp. 9827–9836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Normant, G. Paez, K. A. West et al., “The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models,” Oncogene, vol. 30, no. 22, pp. 2581–2586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Takezawa, I. Okamoto, K. Nishio, P. A. Jänne, and K. Nakagawa, “Role of ERK-BIM and STAT3-survivin signaling pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive lung cancer,” Clinical Cancer Research, vol. 17, no. 8, pp. 2140–2148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Katayama, T. M. Khan, C. Benes et al., “Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 18, pp. 7535–7540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Sasaki, J. Koivunen, A. Ogino et al., “A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors,” Cancer Research, vol. 71, no. 18, pp. 6051–6060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Mazzone and P. M. Comoglio, “The Met pathway: master switch and drug target in cancer progression,” FASEB Journal, vol. 20, no. 10, pp. 1611–1621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. J. M. Siegfried, L. A. Weissfeld, J. D. Luketich, R. J. Weyant, C. T. Gubish, and R. J. Landreneau, “The clinical significance of hepatocyte growth factor for non-small cell lung cancer,” Annals of Thoracic Surgery, vol. 66, no. 6, pp. 1915–1918, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Olivero, M. Rizzo, R. Madeddu et al., “Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas,” British Journal of Cancer, vol. 74, no. 12, pp. 1862–1868, 1996. View at Google Scholar · View at Scopus
  113. L. Ding, G. Getz, D. A. Wheeler et al., “Somatic mutations affect key pathways in lung adenocarcinoma,” Nature, vol. 455, no. 7216, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Onozato, T. Kosaka, H. Kuwano, Y. Sekido, Y. Yatabe, and T. Mitsudomi, “Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers,” Journal of Thoracic Oncology, vol. 4, no. 1, pp. 5–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Krishnaswamy, R. Kanteti, J. S. Duke-Cohan et al., “Ethnic differences and functional analysis of MET mutations in lung cancer,” Clinical Cancer Research, vol. 15, no. 18, pp. 5714–5723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Kong-Beltran, S. Seshagiri, J. Zha et al., “Somatic mutations lead to an oncogenic deletion of Met in lung cancer,” Cancer Research, vol. 66, no. 1, pp. 283–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Bean, C. Brennan, J. Y. Shih et al., “MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20932–20937, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. J. A. Engelman, K. Zejnullahu, T. Mitsudomi et al., “MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling,” Science, vol. 316, no. 5827, pp. 1039–1043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. P. A. Zucali, M. G. Ruiz, E. Giovannetti et al., “Role of cMET expression in non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors,” Annals of Oncology, vol. 19, no. 9, pp. 1605–1612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. F. Cappuzzo, P. A. Jänne, M. Skokan et al., “MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients,” Annals of Oncology, vol. 20, no. 2, pp. 298–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Beau-Faller, A. M. Ruppert, A. C. Voegeli et al., “MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naïve cohort,” Journal of Thoracic Oncology, vol. 3, no. 4, pp. 331–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Graus-Porta, R. R. Beerli, J. M. Daly, and N. E. Hynes, “ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling,” The EMBO Journal, vol. 16, no. 7, pp. 1647–1655, 1997. View at Publisher · View at Google Scholar · View at Scopus
  123. E. Tzahar, H. Waterman, X. Chen et al., “A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5276–5287, 1996. View at Google Scholar · View at Scopus
  124. M. Alimandi, A. Romano, M. C. Curia et al., “Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas,” Oncogene, vol. 10, no. 9, pp. 1813–1821, 1995. View at Google Scholar · View at Scopus
  125. M. A. Olayioye, D. Graus-Porta, R. R. Beerli, J. Rohrer, B. Gay, and N. E. Hynes, “ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner,” Molecular and Cellular Biology, vol. 18, no. 9, pp. 5042–5051, 1998. View at Google Scholar · View at Scopus
  126. S. K. Muthuswamy, M. Gilman, and J. S. Brugge, “Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 6845–6857, 1999. View at Google Scholar · View at Scopus
  127. H. Shigematsu and A. F. Gazdar, “Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers,” International Journal of Cancer, vol. 118, no. 2, pp. 257–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. P. Stephens, C. Hunter, G. Bignell et al., “Intragenic ERBB2 kinase mutations in tumours,” Nature, vol. 431, no. 7008, pp. 525–526, 2004. View at Google Scholar · View at Scopus
  129. H. Sasaki, K. Endo, A. Konishi et al., “EGFR mutation status in Japanese lung cancer patients: genotyping analysis using lightcycler,” Clinical Cancer Research, vol. 11, no. 8, pp. 2924–2929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. K. Tomizawa, K. Suda, R. Onozato et al., “Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers,” Lung Cancer, vol. 74, no. 1, pp. 139–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. M. C. Franklin, K. D. Carey, F. F. Vajdos, D. J. Leahy, A. M. de Vos, and M. X. Sliwkowski, “Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex,” Cancer Cell, vol. 5, no. 4, pp. 317–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. W. Xia, R. J. Mullin, B. R. Keith et al., “Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways,” Oncogene, vol. 21, no. 41, pp. 6255–6263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. H. J. Ross, G. R. Blumenschein Jr., J. Aisner et al., “Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer,” Clinical Cancer Research, vol. 16, no. 6, pp. 1938–1949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. J. M. Kyriakis, H. App, X. F. Zhang et al., “Raf-1 activates MAP kinase-kinase,” Nature, vol. 358, no. 6385, pp. 417–421, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. X. F. Zhang, J. Settleman, J. M. Kyriakis et al., “Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1,” Nature, vol. 364, no. 6435, pp. 308–313, 1993. View at Publisher · View at Google Scholar · View at Scopus
  136. S. S. Sridhar, D. Hedley, and L. L. Siu, “Raf kinase as a target for anticancer therapeutics,” Molecular Cancer Therapeutics, vol. 4, no. 4, pp. 677–685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. M. J. Garnett and R. Marais, “Guilty as charged: B-RAF is a human oncogene,” Cancer Cell, vol. 6, no. 4, pp. 313–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Davies, G. R. Bignell, C. Cox et al., “Mutations of the BRAF gene in human cancer,” Nature, vol. 417, no. 6892, pp. 949–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Wellbrock, M. Karasarides, and R. Marais, “The RAF proteins take centre stage,” Nature Reviews Molecular Cell Biology, vol. 5, no. 11, pp. 875–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. M. J. Garnett, S. Rana, H. Paterson, D. Barford, and R. Marais, “Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization,” Molecular Cell, vol. 20, no. 6, pp. 963–969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. K. Naoki, T. H. Chen, W. G. Richards, D. J. Sugarbaker, and M. Meyerson, “Missense mutations of the BRAF gene in human lung adenocarcinoma,” Cancer Research, vol. 62, no. 23, pp. 7001–7003, 2002. View at Google Scholar · View at Scopus
  142. H. Sasaki, O. Kawano, K. Endo et al., “Uncommon V599E BRAF mutations in Japanese patients with lung cancer,” Journal of Surgical Research, vol. 133, no. 2, pp. 203–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. P. K. Paik, M. E. Arcila, M. Fara et al., “Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations,” Journal of Clinical Oncology, vol. 29, no. 15, pp. 2046–2051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Downward, “Targeting RAF: trials and tribulations,” Nature Medicine, vol. 17, no. 3, pp. 286–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. S. A. Melo, C. Moutinho, S. Ropero et al., “A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells,” Cancer Cell, vol. 18, no. 4, pp. 303–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. E. D. Andrulis, J. Werner, A. Nazarian, H. Erdjument-Bromage, P. Tempst, and J. T. Lis, “The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila,” Nature, vol. 420, no. 6917, pp. 837–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  147. C. M. Johannessen, J. S. Boehm, S. Y. Kim et al., “COT drives resistance to RAF inhibition through MAP kinase pathway reactivation,” Nature, vol. 468, no. 7326, pp. 968–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. L. R. Howe, S. J. Leevers, N. Gomez, S. Nakielny, P. Cohen, and C. J. Marshall, “Activation of the MAP kinase pathway by the protein kinase raf,” Cell, vol. 71, no. 2, pp. 335–342, 1992. View at Publisher · View at Google Scholar · View at Scopus
  149. H. Sasaki, Y. Hikosaka, K. Okuda et al., “MEK1 gene mutation in Japanese lung adenocarcinoma patients,” Molecular Medicine Reports, vol. 2, no. 2, pp. 153–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. O. Takahashi, R. Komaki, P. D. Smith et al., “Combined MEK and VEGFR inhibition in orthotopic human lung cancer models results in enhanced inhibition of tumor angiogenesis, growth, and metastasis,” Clinical Cancer Research, vol. 18, no. 6, pp. 1641–1654, 2012. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Tanizaki, I. Okamoto, K. Takezawa et al., “Combined effect of ALK and MEK inhibitors in EML4-ALK-positive non-small-cell lung cancer cells,” British Journal of Cancer, vol. 106, no. 4, pp. 763–767, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. Y. Samuels, L. A. Diaz Jr., O. Schmidt-Kittler et al., “Mutant PIK3CA promotes cell growth and invasion of human cancer cells,” Cancer Cell, vol. 7, no. 6, pp. 561–573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Garnis, W. W. Lockwood, E. Vucic et al., “High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH,” International Journal of Cancer, vol. 118, no. 6, pp. 1556–1564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. H. Yamamoto, H. Shigematsu, M. Nomura et al., “PIK3CA mutations and copy number gains in human lung cancers,” Cancer Research, vol. 68, no. 17, pp. 6913–6921, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. M. Ji, H. Guan, C. Gao, B. Shi, and P. Hou, “Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC),” BMC Cancer, vol. 11, article 147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. J. D. Carpten, A. L. Faber, C. Horn et al., “A transforming mutation in the pleckstrin homology domain of AKT1 in cancer,” Nature, vol. 448, no. 7152, pp. 439–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. D. Malanga, M. Scrima, C. de Marco et al., “Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung,” Cell Cycle, vol. 7, no. 5, pp. 665–669, 2008. View at Google Scholar · View at Scopus
  158. K. A. Kwei, Y. H. Kim, L. Girard et al., “Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer,” Oncogene, vol. 27, no. 25, pp. 3635–3640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. G. Stenhouse, N. Fyfe, G. King, A. Chapman, and K. M. Kerr, “Thyroid transcription factor 1 in pulmonary adenocarcinoma,” Journal of Clinical Pathology, vol. 57, no. 4, pp. 383–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. Maeda, V. Davé, and J. A. Whitsett, “Transcriptional control of lung morphogenesis,” Physiological Reviews, vol. 87, no. 1, pp. 219–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. H. Tanaka, K. Yanagisawa, K. Shinjo et al., “Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1,” Cancer Research, vol. 67, no. 13, pp. 6007–6011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. M. DeFelice, D. Silberschmidt, R. DiLauro et al., “TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 35574–35583, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. S. E. Wert, C. R. Dey, P. A. Blair, S. Kimura, and J. A. Whitsett, “Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation,” Developmental Biology, vol. 242, no. 2, pp. 75–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Galambos, H. Levy, C. L. Cannon et al., “Pulmonary pathology in thyroid transcription factor-1 deficiency syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 4, pp. 549–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. J. Kendall, Q. Liu, A. Bakleh et al., “Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 42, pp. 16663–16668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. J. A. Barletta, S. Perner, A. J. Iafrate et al., “Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 1977–1986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. X. Tang, H. Kadara, C. Behrens et al., “Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: implications in lung cancer pathogenesis and prognosis,” Clinical Cancer Research, vol. 17, no. 8, pp. 2434–2443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. D. C. Chhieng, J. F. Cangiarella, M. F. Zakowski, S. Goswami, J. M. Cohen, and H. T. Yee, “Use of thyroid transcription factor 1, PE-10, and cytokeratins 7 and 20 in discriminating between primary lung carcinomas and metastatic lesions in fine-needle aspiration biopsy specimens,” Cancer, vol. 93, no. 5, pp. 330–336, 2001. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Jagirdar, “Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 3, pp. 384–396, 2008. View at Google Scholar · View at Scopus
  170. L. Deutsch, M. Wrage, S. Koops et al., “Opposite roles of FOXA1 and NKX2-1 in lung cancer progression,” Genes Chromosomes & Cancer, vol. 51, no. 6, pp. 618–629, 2012. View at Publisher · View at Google Scholar · View at Scopus
  171. J. B. Tagne, S. Gupta, A. C. Gower et al., “Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors,” PLoS One, vol. 7, no. 1, Article ID e29907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  172. M. M. Winslow, T. L. Dayton, R. G. W. Verhaak et al., “Suppression of lung adenocarcinoma progression by Nkx2-1,” Nature, vol. 473, no. 7345, pp. 101–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. N. H. C. Au, M. Cheang, D. G. Huntsman et al., “Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers,” Journal of Pathology, vol. 204, no. 1, pp. 101–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  174. F. Barlési, D. Pinot, A. Legoffic et al., “Positive thyroid transcription factor I staining strongly correlates with survival of patients with adenocarcinoma of the lung,” British Journal of Cancer, vol. 93, no. 4, pp. 450–452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  175. T. Berghmans, M. Paesmans, C. Mascaux et al., “Thyroid transcription factor 1—a new prognostic factor in lung cancer: a meta-analysis,” Annals of Oncology, vol. 17, no. 11, pp. 1673–1676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. V. K. Anagnostou, K. N. Syrigos, G. Bepler, R. J. Homer, and D. L. Rimm, “Thyroid transcription factor 1 is an independent prognostic factor for patients with stage I lung adenocarcinoma,” Journal of Clinical Oncology, vol. 27, no. 2, pp. 271–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. A. Charest, K. Lane, K. McMahon et al., “Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21),” Genes Chromosomes & Cancer, vol. 37, no. 1, pp. 58–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Charest, E. W. Wilker, M. E. McLaughlin et al., “ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice,” Cancer Research, vol. 66, no. 15, pp. 7473–7481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. K. Bergethon, A. T. Shaw, S. H. I. Ou et al., “ROS1 rearrangements define a unique molecular class of lung cancers,” Journal of Clinical Oncology, vol. 30, no. 8, pp. 863–870, 2012. View at Publisher · View at Google Scholar · View at Scopus
  180. T. Sasaki, S. J. Rodig, L. R. Chirieac, and P. A. Jänne, “The biology and treatment of EML4-ALK non-small cell lung cancer,” European Journal of Cancer, vol. 46, no. 10, pp. 1773–1780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. U. McDermott, A. J. Iafrate, N. S. Gray et al., “Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors,” Cancer Research, vol. 68, no. 9, pp. 3389–3395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Takahashi, J. Ritz, and G. M. Cooper, “Activation of a novel human transforming gene, ret, by DNA rearrangement,” Cell, vol. 42, no. 2, pp. 581–588, 1985. View at Google Scholar · View at Scopus
  183. A. Fusco, M. Grieco, M. Santoro et al., “A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases,” Nature, vol. 328, no. 6126, pp. 170–172, 1987. View at Google Scholar · View at Scopus
  184. R. Ciampi and Y. E. Nikiforov, “Minireview: RET/PTC rearrangements and braf mutations in thyroid tumorigenesis,” Endocrinology, vol. 148, no. 3, pp. 936–941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. J. Chmielecki, M. Peifer, P. Jia et al., “Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer,” Nucleic Acids Research, vol. 38, no. 20, pp. 6985–6996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. S. A. Wells Jr., J. E. Gosnell, R. F. Gagel et al., “Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer,” Journal of Clinical Oncology, vol. 28, no. 5, pp. 767–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. E. P. Sablin, “Kinesins and microtubules: their structures and motor mechanisms,” Current Opinion in Cell Biology, vol. 12, no. 1, pp. 35–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  188. A. Mogi and H. Kuwano, “TP53 mutations in nonsmall cell lung cancer,” Journal of Biomedicine & Biotechnology, vol. 2011, Article ID 583929, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. L. Mao, “Molecular abnormalities in lung carcinogenesis and their potential clinical implications,” Lung Cancer, vol. 34, supplement 2, pp. S27–S34, 2001. View at Google Scholar · View at Scopus
  190. B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53 network,” Nature, vol. 408, no. 6810, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Petitjean, M. I. W. Achatz, A. L. Borresen-Dale, P. Hainaut, and M. Olivier, “TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes,” Oncogene, vol. 26, no. 15, pp. 2157–2165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Petitjean, E. Mathe, S. Kato et al., “Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database,” Human Mutation, vol. 28, no. 6, pp. 622–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. M. J. Peart and C. Prives, “Mutant p53 gain of function: the NF-Y connection,” Cancer Cell, vol. 10, no. 3, pp. 173–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. H. Song and Y. Xu, “Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways,” Cell Cycle, vol. 6, no. 13, pp. 1570–1573, 2007. View at Google Scholar · View at Scopus
  195. R. Brosh and V. Rotter, “When mutants gain new powers: news from the mutant p53 field,” Nature Reviews Cancer, vol. 9, no. 10, pp. 701–713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. G. P. Pfeifer and A. Besaratinia, “Mutational spectra of human cancer,” Human Genetics, vol. 125, no. 5-6, pp. 493–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. P. W. Hinds, C. A. Finlay, R. S. Quartin et al., “Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes,” Cell Growth & Differentiation, vol. 1, no. 12, pp. 571–580, 1990. View at Google Scholar · View at Scopus
  198. G. P. Pfeifer, M. F. Denissenko, M. Olivier, N. Tretyakova, S. S. Hecht, and P. Hainaut, “Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers,” Oncogene, vol. 21, no. 48, pp. 7435–7451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  199. S. P. Hussain, M. H. Hollstein, and C. C. Harris, “p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment,” Annals of the New York Academy of Sciences, vol. 919, pp. 79–85, 2000. View at Google Scholar · View at Scopus
  200. P. Hainaut and G. P. Pfeifer, “Patterns of p53→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke,” Carcinogenesis, vol. 22, no. 3, pp. 367–374, 2001. View at Google Scholar · View at Scopus
  201. L. E. Smith, M. F. Denissenko, W. P. Bennett et al., “Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons,” Journal of the National Cancer Institute, vol. 92, no. 10, pp. 803–811, 2000. View at Google Scholar · View at Scopus
  202. S. Toyooka, T. Tsuda, and A. F. Gazdar, “The TP53 gene, tobacco exposure, and lung cancer,” Human Mutation, vol. 21, no. 3, pp. 229–239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  203. M. F. Denissenko, T. B. Koudriakova, L. Smith, T. R. O'Connor, A. D. Riggs, and G. P. Pfeifer, “The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts,” Oncogene, vol. 17, no. 23, pp. 3007–3014, 1998. View at Google Scholar · View at Scopus
  204. R. Gealy, L. Zhang, J. M. Siegfried, J. D. Luketich, and P. Keohavong, “Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women,” Cancer Epidemiology Biomarkers & Prevention, vol. 8, no. 4, pp. 297–302, 1999. View at Google Scholar · View at Scopus
  205. U. Vogt, A. Zaczek, F. Klinke, A. Granetzny, K. Bielawski, and B. Falkiewicz, “p53 gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer,” Journal of Cancer Research and Clinical Oncology, vol. 128, no. 3, pp. 141–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  206. M. C. Tammemagi, J. R. McLaughlin, and S. B. Bull, “Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers,” Cancer Epidemiology Biomarkers & Prevention, vol. 8, no. 7, pp. 625–634, 1999. View at Google Scholar · View at Scopus
  207. M. B. Reichel, H. Ohgaki, I. Petersen, and P. Kleihues, “p53 mutations in primary human lung tumors and their metastases,” Molecular Carcinogenesis, vol. 9, no. 2, pp. 105–109, 1994. View at Google Scholar · View at Scopus
  208. I. Chiba, T. Takahashi, M. M. Nau et al., “Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer,” Oncogene, vol. 5, no. 10, pp. 1603–1610, 1990. View at Google Scholar · View at Scopus
  209. C. C. Harris, “p53 tumor suppressor gene: from the basic research laboratory to the clinic—an abridged historical perspective,” Carcinogenesis, vol. 17, no. 6, pp. 1187–1198, 1996. View at Publisher · View at Google Scholar · View at Scopus
  210. Y. L. Chang, C. T. Wu, J. Y. Shih, and Y. C. Lee, “Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers,” Annals of Surgical Oncology, vol. 18, no. 2, pp. 543–550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. E. Steels, M. Paesmans, T. Berghmans et al., “Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis,” The European Respiratory Journal, vol. 18, no. 4, pp. 705–719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  212. T. Mitsudomi, N. Hamajima, M. Ogawa, and T. Takahashi, “Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis,” Clinical Cancer Research, vol. 6, no. 10, pp. 4055–4063, 2000. View at Google Scholar · View at Scopus
  213. J. Laudanski, W. Niklinska, T. Burzykowski, L. Chyczewski, and J. Niklinski, “Prognostic significance of p53 and bcl-2 abnormalities in operable nonsmall cell lung cancer,” The European Respiratory Journal, vol. 17, no. 4, pp. 660–666, 2001. View at Publisher · View at Google Scholar · View at Scopus
  214. W. Niklinska, T. Burzykowski, J. Laudanski, E. Chyczewska, L. Chyczewski, and J. Niklinski, “Strong association between P53 protein accumulation, serum antibodies and gene mutation in non-small cell lung cancer,” Folia Histochemica et Cytobiologica, vol. 39, no. 2, pp. 51–56, 2001. View at Google Scholar · View at Scopus
  215. W. Niklinska, L. Chyczewski, J. Laudanski, B. Sawicki, and J. Niklinski, “Detection of P53 abnormalities in non-small cell lung cancer by yeast functional assay,” Folia Histochemica et Cytobiologica, vol. 39, no. 2, pp. 147–148, 2001. View at Google Scholar · View at Scopus
  216. J. Li, C. Yen, D. Liaw et al., “PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer,” Science, vol. 275, no. 5308, pp. 1943–1947, 1997. View at Publisher · View at Google Scholar · View at Scopus
  217. C. Eng, “PTEN: one gene, many syndromes,” Human Mutation, vol. 22, no. 3, pp. 183–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  218. L. Li and A. H. Ross, “Why is PTEN an important tumor suppressor?” Journal of Cellular Biochemistry, vol. 102, no. 6, pp. 1368–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  219. W. Liu, Y. Zhou, S. N. Reske, and C. Shen, “PTEN mutation: many birds with one stone in tumorigenesis,” Anticancer Research, vol. 28, no. 6, pp. 3613–3619, 2008. View at Google Scholar · View at Scopus
  220. J. A. Engelman, J. Luo, and L. C. Cantley, “The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism,” Nature Reviews Genetics, vol. 7, no. 8, pp. 606–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  221. L. M. L. Chow and S. J. Baker, “PTEN function in normal and neoplastic growth,” Cancer Letters, vol. 241, no. 2, pp. 184–196, 2006. View at Publisher · View at Google Scholar · View at Scopus
  222. N. Chalhoub and S. J. Baker, “PTEN and the PI3-kinase pathway in cancer,” Annual Review of Pathology, vol. 4, pp. 127–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  223. C. J. Marsit, S. Zheng, K. Aldape et al., “PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration,” Human Pathology, vol. 36, no. 7, pp. 768–776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  224. G. Jin, M. J. Kim, H. S. Jeon et al., “PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers,” Lung Cancer, vol. 69, no. 3, pp. 279–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. A. Hemminki, D. Markie, I. Tomlinson et al., “A serine/threonine kinase gene defective in Peutz-Jeghers syndrome,” Nature, vol. 391, no. 6663, pp. 184–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  226. D. E. Jenne, H. Reimann, J. I. Nezu et al., “Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase,” Nature Genetics, vol. 18, no. 1, pp. 38–43, 1998. View at Publisher · View at Google Scholar · View at Scopus
  227. F. M. Giardiello, S. B. Welsh, and S. R. Hamilton, “Increased risk of cancer in the Peutz-Jeghers syndrome,” New England Journal of Medicine, vol. 316, no. 24, pp. 1511–1514, 1987. View at Google Scholar · View at Scopus
  228. S. P. Hong, F. C. Leiper, A. Woods, D. Carling, and M. Carlson, “Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8839–8843, 2003. View at Publisher · View at Google Scholar · View at Scopus
  229. J. Carretero, T. Shimamura, K. Rikova et al., “Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors,” Cancer Cell, vol. 17, no. 6, pp. 547–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  230. P. A. Marignani, “LKB1, the multitasking tumour suppressor kinase,” Journal of Clinical Pathology, vol. 58, no. 1, pp. 15–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  231. R. J. Shaw, N. Bardeesy, B. D. Manning et al., “The LKB1 tumor suppressor negatively regulates mTOR signaling,” Cancer Cell, vol. 6, no. 1, pp. 91–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  232. U. Shah, N. E. Sharpless, and D. N. Hayes, “LKB1 and lung cancer: more than the usual suspects,” Cancer Research, vol. 68, no. 10, pp. 3562–3565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  233. H. Ji, M. R. Ramsey, D. N. Hayes et al., “LKB1 modulates lung cancer differentiation and metastasis,” Nature, vol. 448, no. 7155, pp. 807–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. M. Stražišar, V. Mlakar, T. Rott, and D. Glavač, “Somatic alterations of the serine/threonine kinase LKB1 gene in squamous cell (SCC) and large cell (LCC) lung carcinoma,” Cancer Investigation, vol. 27, no. 4, pp. 407–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. C. J. Sherr, “Cancer cell cycles,” Science, vol. 274, no. 5293, pp. 1672–1677, 1996. View at Publisher · View at Google Scholar · View at Scopus
  236. J. M. Trimarchi and J. A. Lees, “Sibling rivalry in the E2F family,” Nature Reviews Molecular Cell Biology, vol. 3, no. 1, pp. 11–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  237. C. J. Hussussian, J. P. Struewing, A. M. Goldstein et al., “Germline p16 mutations in familial melanoma,” Nature Genetics, vol. 8, no. 1, pp. 15–21, 1994. View at Publisher · View at Google Scholar · View at Scopus
  238. A. Kamb, N. A. Gruis, J. Weaver-Feldhaus et al., “A cell cycle regulator potentially involved in genesis of many tumor types,” Science, vol. 264, no. 5157, p. 440, 1994. View at Google Scholar · View at Scopus
  239. T. Nobori, K. Miura, D. J. Wu, A. Lois, K. Takabayashi, and D. A. Carson, “Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers,” Nature, vol. 368, no. 6473, pp. 753–756, 1994. View at Publisher · View at Google Scholar · View at Scopus
  240. P. Cairns, L. Mao, A. Merlo et al., “Rates of p16 (MTS1) mutations in primary tumors with 9p loss,” Science, vol. 265, no. 5170, pp. 415–417, 1994. View at Google Scholar · View at Scopus
  241. P. Cairns, T. J. Polascik, Y. Eby et al., “Frequency of homozygous deletion at p16/CDKN2 in primary human tumours,” Nature Genetics, vol. 11, no. 2, pp. 210–212, 1995. View at Google Scholar · View at Scopus
  242. B. A. Weir, M. S. Woo, G. Getz et al., “Characterizing the cancer genome in lung adenocarcinoma,” Nature, vol. 450, no. 7171, pp. 893–898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  243. S. Gazzeri, V. Gouyer, C. Vour'ch, C. Brambilla, and E. Brambilla, “Mechanisms of p16INK4A inactivation in non small-cell lung cancers,” Oncogene, vol. 16, no. 4, pp. 497–504, 1998. View at Google Scholar · View at Scopus
  244. E. Brambilla, D. Moro, S. Gazzeri, and C. Brambilla, “Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance,” The Journal of Pathology, vol. 188, pp. 351–360, 1999. View at Google Scholar
  245. N. Ota, K. Kawakami, T. Okuda et al., “Prognostic significance of p16INK4a hypermethylation in non-small cell lung cancer is evident by quantitative DNA methylation analysis,” Anticancer Research, vol. 26, no. 5, pp. 3729–3732, 2006. View at Google Scholar · View at Scopus