Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2013, Article ID 502438, 5 pages
http://dx.doi.org/10.1155/2013/502438
Research Article

Ameliorative Effects of Acacia Honey against Sodium Arsenite-Induced Oxidative Stress in Some Viscera of Male Wistar Albino Rats

Department of Biochemistry, Ahmadu Bello University, Zaria 810271, Kaduna State, Nigeria

Received 23 July 2013; Revised 24 October 2013; Accepted 27 October 2013

Academic Editor: Tzi Bun Ng

Copyright © 2013 Muhammad Aliyu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Anklam, “A review of the analytical methods to determine the geographical and antioxidant activity of olive extracts,” Food Chemistry, vol. 73, pp. 73–84, 1998. View at Google Scholar
  2. N. Gheldof, X.-H. Wang, and N. J. Engeseth, “Identification and quantification of antioxidant components of honeys from various floral sources,” Journal of Agricultural and Food Chemistry, vol. 50, no. 21, pp. 5870–5877, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. N. Guha, “Chronic arsenic toxicity and human health,” The Indian Jounal of Medical Research, vol. 128, pp. 436–447, 2008. View at Google Scholar
  4. J. Tchoumboue, J. Awah-Ndukum, F. A. Fonteh, N. D. Dongock, J. Pinta, and Z. A. Movondo, “Physico-chemical and microbiological characteristics of honey from the Sudano-Guinean zone of West Cameroon,” African Journal of Biotechnology, vol. 6, no. 7, pp. 908–913, 2007. View at Google Scholar
  5. A. Muhammad, A. O. Oyeronke, E. O. Solomon et al., “Daily consumption of honey: effects on male wister albino rats,” International Journal of Food Nutrition and Safety, vol. 1, no. 2, pp. 66–74, 2012. View at Google Scholar
  6. A. Muhammad, A. O. Oyeronke, D. F. Ahsana et al., “AH modulates cell cycle progression, pro-inflammatory cytokines and calcium ions secretion in PC-3 cell line,” Journal of Cancer Science and Therapy, 2012. View at Publisher · View at Google Scholar
  7. A. Muhammad, A. O. Oyeronke, D. F. Ahsana et al., “Molecular mechanism of anti-proliferation potential of Acacia honey on NCI-H460 cell line,” Nutrition and Cancer, vol. 65, no. 2, pp. 296–304, 2013. View at Publisher · View at Google Scholar
  8. A. Muhammad, O. A. Odunola, D. F. Ahsana et al., “Fractionation of Acacia honey affects its antioxidant potential in vitro,” Journal of Acute Disease, vol. 1, no. 2, pp. 115–119, 2012. View at Publisher · View at Google Scholar
  9. A. M. Liviu, S. D. Daniel, B. P. Cristina, I. Marioara, B. Otilia, and G. Iosif, “The development of a biochemical profile of Acacia honey by identifying biochemical determinants of its quality,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, pp. 84–90, 2010. View at Google Scholar
  10. V. M. French, R. A. Cooper, and P. C. Molan, “The antibacterial activity of honey against coagulase-negative staphylococci,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 228–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. C. Chan and J. Huff, “Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence,” Journal of Environmental Science and Health C, vol. 15, no. 2, pp. 83–122, 1997. View at Google Scholar · View at Scopus
  12. A. Chatterjee, D. Das, and D. Chakraborti, “The study of underground water contamination by arsenic in the residential area of Behela and Calculta, due to industrial pollution,” Environmental Pollution, vol. 80, no. 1, pp. 57–65, 1993. View at Google Scholar · View at Scopus
  13. S. E. Owumi, O. A. Odunola, and M. Aliyu, “Co-administration of sodium arsenite and ethanol: protection by aqueous extract of Aframomum longiscapum seeds,” Pharmacognosy Research, vol. 4, no. 3, pp. 154–160, 2012. View at Publisher · View at Google Scholar
  14. O. A. Odunola, K. A. Akinwumi, B. Ogunbiyi, and O. Tugbobo, “Interaction and enhancement of the toxic effects of sodium arsenite and lead acetate in wister rats,” African Journal of Biomedical Research, vol. 10, no. 1, pp. 59–65, 2007. View at Publisher · View at Google Scholar
  15. A. Sharma, M. K. Sharma, and M. Kumar, “Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice,” Chemico-Biological Interactions, vol. 180, no. 1, pp. 20–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Roy, M. Roy, P. K. Pandey, and S. P. Tiwari, “Effects of tissue trace minerals status and histophathological changes in chronic arsenicosis in goats,” Veterinary World, vol. 2, no. 1, pp. 8–9, 2009. View at Google Scholar
  17. S. S. Vutukuru, N. Arun Prabhath, M. Raghavender, and A. Yerramilli, “Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita,” International Journal of Environmental Research and Public Health, vol. 4, no. 3, pp. 224–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Preston, B. J. Dean, S. Galloway, H. Holden, A. F. McFee, and M. Shelby, “Mammalian in vivo cytogenetic assays: analysis of chromosome aberrations in bone marrow cells,” Mutation Research, vol. 189, no. 2, pp. 157–165, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Chowdhury and M. Soulsby, “Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet,” Annals of Clinical and Laboratory Science, vol. 32, no. 2, pp. 188–192, 2002. View at Google Scholar · View at Scopus
  20. H. E. Aebi, Methods in Enzymatic Analysis, Academic press, New York, NY, USA, 1983.
  21. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” The Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Google Scholar · View at Scopus
  22. A. Wendel, Enzymatic Basis of Detoxication, vol. 1, Academic Press, New York, NY, USA, 1980.
  23. E. Niki, “Antioxidant capacity: which capacity and how to assess it?” Journal of Berry Research, vol. 1, no. 4, pp. 169–176, 2012. View at Publisher · View at Google Scholar
  24. G. Chiva-Blanch and F. Visioli, “Polyphenols and health: moving beyond antioxidants,” Journal of Berry Research, vol. 2, no. 2, pp. 63–71, 2012. View at Publisher · View at Google Scholar
  25. S. L. Winski and D. E. Carter, “Interactions of rat red blood cell sulfhydryls with arsenate and arsenite,” Journal of Toxicology and Environmental Health, vol. 46, no. 3, pp. 379–397, 1995. View at Google Scholar · View at Scopus
  26. O. Ramos, L. Carrizales, L. Yanez et al., “Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels,” Environmental Health Perspectives, vol. 103, no. 1, pp. 85–88, 1995. View at Google Scholar · View at Scopus
  27. G. Poli, G. Leonarduzzi, F. Biasi, and E. Chiarpotto, “Oxidative stress and cell signalling,” Current Medicinal Chemistry, vol. 11, no. 9, pp. 1163–1182, 2004. View at Google Scholar · View at Scopus
  28. S. Bhattacharya and P. K. Haldar, “Ameliorative effect trichosanthes dioica root against experimentally induced arsenic toxicity in male albino rats,” Environmental Toxicology and Pharmacology, vol. 33, no. 3, pp. 394–402, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. M.D. N. Guha, “Chronic arsenic toxicity and human health,” Indian Journal of Medical Research, vol. 128, no. 4, pp. 436–447, 2008. View at Google Scholar · View at Scopus
  30. S. Kapaj, H. Peterson, K. Liber, and P. Bhattacharya, “Human health effects from chronic arsenic poisoning—a review,” Journal of Environmental Science and Health A, vol. 41, no. 10, pp. 2399–2428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. O. O. Erejuwa, S. A. Sulaiman, and M. S. Ab Wahab, “Honey: a novel antioxidant,” Molecules, vol. 17, no. 4, pp. 4400–4423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Alvarez-Suarez, F. Giampieri, A. M. González-Paramás et al., “Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage,” Food and Chemical Toxicology, vol. 50, no. 5, pp. 1508–1516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. I. Khalil, N. Alam, M. Moniruzzaman, S. A. Sulaiman, and S. H. Gan, “Phenolic acid composition and antioxidant properties of Malaysian honeys,” Journal of Food Science, vol. 76, no. 6, pp. C921–C928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. van den Berg, E. van den Worm, H. C. Q. van Ufford, S. B. Halkes, M. J. Hoekstra, and C. J. Beukelman, “An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey,” Journal of Wound Care, vol. 17, no. 4, pp. 172–178, 2008. View at Google Scholar · View at Scopus
  35. G. Beretta, M. Orioli, and R. M. Facino, “Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926),” Planta Medica, vol. 73, no. 11, pp. 1182–1189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. K. Kishore, A. S. Halim, M. S. N. Syazana, and K. N. S. Sirajudeen, “Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources,” Nutrition Research, vol. 31, no. 4, pp. 322–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Marghitas, D. S. Dezmirean, C. B. Pocol, M. Ilea, O. Bobis, and I. Gergen, “The development of a biochemical profile of Acacia honey by identifying biochemical determinants of its quality,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, pp. 84–90, 2010. View at Google Scholar · View at Scopus
  38. J. M. Alvarez-Suarez, F. Giampieri, E. Damiani et al., “Radical-scavenging activity, protective effect against lipid peroxidation and mineral contents of monofloral cuban honeys,” Plant Foods for Human Nutrition, vol. 67, no. 1, pp. 31–38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Gharzouli, S. Amira, A. Gharzouli, and S. Khennouf, “Gastroprotective effects of honey and glucose-fructose-sucrose-maltose mixture against ethanol-, indomethacin-, and acidified aspirin-induced lesions in the rat,” Experimental and Toxicologic Pathology, vol. 54, no. 3, pp. 217–221, 2002. View at Google Scholar · View at Scopus
  40. N. S. Al-Waili, K. Y. Saloom, T. N. Al-Waili et al., “Influence of various diet regimens on deterioration of hepatic function and hematological parameters following carbon tetrachloride: a potential protective role of natural honey,” Natural Product Research, vol. 20, no. 13, pp. 1258–1264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Mohamed, S. A. Sulaiman, H. Jaafar, and K. N. S. Sirajudeen, “Effect of different doses of Malaysian honey on reproductive parameters in adult male rats,” Andrologia, supplement 1, 2011. View at Publisher · View at Google Scholar
  42. S. S. M. Zaid, S. A. Sulaiman, K. N. M. Sirajudeen, and N. H. Othman, “The effects of Tualang honey on female reproductive organs, tibia bone and hormonal profile in ovariectomised rats—animal model for menopause,” BMC Complementary and Alternative Medicine, vol. 10, article 82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. O. Omotayo, S. Gurtu, S. A. Sulaiman, M. S. Ab Wahab, K. N. S. Sirajudeen, and M. S. M. Salleh, “Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats,” International Journal for Vitamin and Nutrition Research, vol. 80, no. 1, pp. 74–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Kassim, M. Achoui, M. R. Mustafa, M. A. Mohd, and K. M. Yusoff, “Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity,” Nutrition Research, vol. 30, no. 9, pp. 650–659, 2010. View at Publisher · View at Google Scholar · View at Scopus