Biochemistry Research International
Volume 2014 (2014), Article ID 348712, 7 pages
http://dx.doi.org/10.1155/2014/348712
A Metabolic Study on Colon Cancer Using 1H Nuclear Magnetic Resonance Spectroscopy
1Biochemistry Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
2Amir Alam Hospital, North Sa’adi Avenue, Tehran 8915964665, Iran
3Imam Khomeini Hospital, Dr. Gharib Road, Tehran 1419733141, Iran
4Biotechnology Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
5Payame Noor University, Tehran 19569, Iran
6Sharif University, Azadi Avenue, Tehran 11559567, Iran
Received 11 May 2014; Accepted 13 July 2014; Published 14 August 2014
Academic Editor: R. J. Linhardt
Copyright © 2014 Zahra Zamani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- “Cancer Facts and Figures for African Americans,” Amrican Cancer Society, 2012.
- A. Safaee, S. R. Fatemi, S. Ashtari, M. Vahedi, B. Moghimi-Dehkordi, and M. R. Zali, “Four years incidence rate of colorectal cancer in iran: a survey of national cancer registry data-implications for screening,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 6, pp. 2695–2698, 2012. View at Publisher · View at Google Scholar · View at Scopus
- D. A. Lieberman, “Screening for colorectal cancer,” The New England Journal of Medicine, vol. 361, no. 12, pp. 1138–1187, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. F. Collins, D. A. Lieberman, T. E. Durbin, and D. G. Weiss, “Accuracy of screening for fecal occult blood on a single stool sample obtained by digital rectal examination: a comparison with recommended sampling practice,” Annals of Internal Medicine, vol. 142, no. 2, pp. 81–85, 2005. View at Google Scholar · View at Scopus
- D. L. Ouyang, J. J. Chen, R. H. Getzenberg, and R. E. Schoen, “Noninvasive testing for colorectal cancer: a review,” The American Journal of Gastroenterology, vol. 100, no. 6, pp. 1393–1403, 2005. View at Publisher · View at Google Scholar · View at Scopus
- P. J. Pickhardt, J. R. Choi, I. Hwang et al., “Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults,” The New England Journal of Medicine, vol. 349, no. 23, pp. 2191–2200, 2003. View at Publisher · View at Google Scholar · View at Scopus
- C. D. Johnson, M. H. Chen, A. Y. Toledano et al., “Accuracy of CT colonography for detection of large adenomas and cancers,” The New England Journal of Medicine, vol. 359, no. 12, pp. 1207–1217, 2008. View at Google Scholar
- S. Summerton, E. Little, and M. S. Cappell, “CT colonography: current status and future promise,” Gastroenterology Clinics of North America, vol. 37, no. 1, pp. 161–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. Rajpal and A. P. Venook, “Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population,” Clinical Advances in Hematology & Oncology, vol. 8, no. 3, pp. 5–7, 2005. View at Google Scholar
- N. V. Reo, “NMR-based metabolomics,” Drug and Chemical Toxicology, vol. 25, no. 4, pp. 375–382, 2002. View at Publisher · View at Google Scholar · View at Scopus
- S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2, pp. 109–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
- J. Xia, R. Mandal, I. V. Sinelnikov, D. Broadhurst, and D. S. Wishart, “MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis,” Nucleic Acids Research, vol. 40, no. 1, pp. W127–W133, 2012. View at Publisher · View at Google Scholar · View at Scopus
- R. H. Barton, J. K. Nicholson, P. Elliott, and E. Holmes, “High-throughput1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study,” International Journal of Epidemiology, vol. 37, supplement 1, pp. i31–i40, 2008. View at Publisher · View at Google Scholar · View at Scopus
- T. Fearn, “On orthogonal signal correction,” Chemometrics and Intelligent Laboratory Systems, vol. 50, no. 1, pp. 47–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
- T. Aittokallio and B. Schwikowski, “Graph-based methods for analysing networks in cell biology,” Briefings in Bioinformatics, vol. 7, no. 3, pp. 243–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
- F. M. Nagengast, M. J. A. L. Grubben, and I. P. Munster, “Role of bile acids in colorectal carcinogenesis,” European Journal of Oncology A, vol. 31, no. 74, pp. 1067–1070, 1995. View at Google Scholar
- E. J. Carey and K. D. Lindor, “Chemoprevention of colorectal cancer with ursodeoxycholic acid: cons,” Clinics and Research in Hepatology and Gastroenterology, vol. 36, supplement 1, pp. S61–S64, 2012. View at Publisher · View at Google Scholar · View at Scopus
- J. L. Tong, Z. H. Ran, J. Shen, G. Q. Fan, and S. D. Xiao, “Association between fecal bile acids and colorectal cancer: a meta-analysis of observational studies,” Yonsei Medical Journal, vol. 49, no. 5, pp. 792–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
- Y. Okazaki, Z. Utama, S. Suidasari et al., “Consumption of vitamin b6 reduces fecal ratio of lithocholic acid to deoxycholic acid, a risk factor for colon cancer, in rats fed a high-fat diet,” Journal of Nutritional Science and Vitaminology, vol. 58, no. 5, pp. 366–370, 2012. View at Publisher · View at Google Scholar · View at Scopus
- P. Zhang, S. Suidasari, T. Hasegawa, N. Yanaka, and N. Kato, “High concentrations of pyridoxal stimulate the expression of IGFBP1 in HepG2 cells through upregulation of the ERK/c-Jun pathway,” Molecular Medicine Reports, vol. 8, no. 4, pp. 973–978, 2013. View at Publisher · View at Google Scholar · View at Scopus
- T. Kayashima, K. Tanaka, Y. Okazaki, K. Matsubara, N. Yanaka, and N. Kato, “Consumption of vitamin B6 reduces colonic damage and protein expression of HSP70 and HO-1, the anti-tumor targets, in rats exposed to 1,2-dimethylhydrazine,” Oncology Letters, vol. 2, no. 6, pp. 1243–1246, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. de Vogel, V. Dindore, M. van Engeland, R. A. Goldbohm, P. A. van den Brandt, and M. P. Weijenberg, “Dietary folate, methionine, riboflavin, and vitamin B-6 and risk of sporadic colorectal cancer,” Journal of Nutrition, vol. 138, no. 12, pp. 2372–2378, 2008. View at Publisher · View at Google Scholar · View at Scopus
- R. J. Klement and U. Kämmerer, “Is there a role for carbohydrate restriction in the treatment and prevention of cancer?” Nutrition and Metabolism, vol. 8, article 75, 2011. View at Publisher · View at Google Scholar · View at Scopus
- W. Zhonghua and W. I. Chang, “Metabonomic profiling of serum from colorectal patients,” Bio-Medical Library, vol. 12, no. 4, pp. 386–390, 2009. View at Google Scholar
- S. Kermorgant and T. Lehy, “Glycine-extended gastrin promotes the invasiveness of human colon cancer cells,” Biochemical and Biophysical Research Communications, vol. 285, no. 1, pp. 136–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
- A. B. Leichtle, J. Nuoffer, U. Ceglarek et al., “Serum amino acid profiles and their alterations in colorectal cancer,” Metabolomics, vol. 8, no. 4, pp. 643–653, 2012. View at Publisher · View at Google Scholar · View at Scopus
- T. J. Koh, G. J. Dockray, A. Varro et al., “Overexpression of glycine-extended gastrin in transgenic mice results in increased colonic proliferation,” Journal of Clinical Investigation, vol. 103, no. 8, pp. 1119–1126, 1999. View at Publisher · View at Google Scholar · View at Scopus
- S. Liu, A. Stromberg, H. Tai, and J. A. Moscow, “Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells,” Molecular Cancer Research, vol. 2, no. 8, pp. 477–487, 2004. View at Google Scholar · View at Scopus
- S. Liu, N. R. Monks, J. W. Hanes, T. P. Begley, H. Yu, and J. A. Moscow, “Sensitivity of breast cancer cell lines to recombinant thiaminase I,” Cancer Chemotherapy and Pharmacology, vol. 66, no. 1, pp. 171–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
- J. A. Zastre, B. S. Hanberry, R. L. Sweet et al., “Up-regulation of vitamin B1 homeostasis genes in breast cancer,” Journal of Nutritional Biochemistry, vol. 24, no. 9, pp. 1616–1624, 2013. View at Publisher · View at Google Scholar · View at Scopus
- A. Haines, G. Metz, J. Dilawari, L. Blendis, and H. Wiggins, “Breath methane in patients with cancer of the large bowel,” The Lancet, vol. 2, no. 8036, pp. 481–483, 1977. View at Google Scholar · View at Scopus
- J. M. Piqué, M. Pallarés, E. Cusó, J. Vilar-Bonet, and M. A. Gassull, “Methane production and colon cancer,” Gastroenterology, vol. 87, no. 3, pp. 601–605, 1984. View at Google Scholar
- G. K. Balendiran, R. Dabur, and D. Fraser, “The role of glutathione in cancer,” Cell Biochemistry and Function, vol. 22, no. 6, pp. 343–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
- C. Denkert, J. Budczies, W. Weichert et al., “Metabolite profiling of human colon carcinoma: deregulation of TCA cycle and amino acid turnover,” Molecular Cancer, vol. 7, article 72, 2008. View at Publisher · View at Google Scholar · View at Scopus
- X. Leschelle, S. Delpal, M. Goubern, H. M. Blottière, and F. Blachier, “Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells,” European Journal of Biochemistry, vol. 267, no. 21, pp. 6435–6442, 2000. View at Publisher · View at Google Scholar · View at Scopus
- J. R. Lupton, “Microbial degradation products influence colon cancer risk: the butyrate controversy,” Journal of Nutrition, vol. 134, no. 2, pp. 479–482, 2004. View at Google Scholar · View at Scopus
- J. Serpa, F. Caiado, T. Carvalho et al., “Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells,” The Journal of Biological Chemistry, vol. 285, no. 50, pp. 39211–39223, 2010. View at Publisher · View at Google Scholar · View at Scopus
- M. E. Kenta, N. Terao, Ch. Tan et al., “Fucosylation is a promising target for cancer diagnosis and therapy,” Biomolecules, vol. 2, pp. 34–45, 2012. View at Google Scholar