Table of Contents Author Guidelines Submit a Manuscript
Biochemistry Research International
Volume 2014, Article ID 527254, 4 pages
http://dx.doi.org/10.1155/2014/527254
Research Article

Influence of Polymorphism on Glycosylation of Serum Amyloid A4 Protein

1Department of Clinical Laboratory Medicine, Jichi Medical University, Tochigi 329-0498, Japan
2Department of Biophysical Chemistry, Kobe Pharmaceutical University, Hyogo 658-8558, Japan

Received 26 March 2014; Revised 7 May 2014; Accepted 7 May 2014; Published 15 May 2014

Academic Editor: R. J. Linhardt

Copyright © 2014 Toshiyuki Yamada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Sipe, “Serum amyloid A: from fibril to function. Current status,” Amyloid, vol. 7, no. 1, pp. 10–12, 2000. View at Google Scholar · View at Scopus
  2. C. M. Uhlar and A. S. Whitehead, “Serum amyloid A, the major vertebrate acute-phase reactant,” European Journal of Biochemistry, vol. 265, no. 2, pp. 501–523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Malle and F. C. de Beer, “Human serum amyloid A, (SAA) protein: a prominent acute-phase reactant for clinical practice,” European Journal of Clinical Investigation, vol. 26, pp. 427–435, 1996. View at Google Scholar
  4. G. Husby, G. Marhaug, B. Dowton, K. Sletten, and J. D. Sipe, “Serum amyloid A (SAA): biochemistry, genetics and the pathogenesis of AA amyloidosis,” Amyloid, vol. 1, no. 2, pp. 119–137, 1994. View at Google Scholar · View at Scopus
  5. A. S. Whitehead, M. C. de Beer, D. M. Steel et al., “Identification of novel members of the serum amyloid A protein superfamily as constitutive apolipoproteins of high density lipoprotein,” The Journal of Biological Chemistry, vol. 267, no. 6, pp. 3862–3867, 1992. View at Google Scholar · View at Scopus
  6. M. C. de Beer, T. Yuan, M. S. Kindy, B. F. Asztalos, P. S. Roheim, and F. C. De Beer, “Characterization of constitutive human serum amyloid A protein (SAA4) as an apolipoprotein,” Journal of Lipid Research, vol. 36, no. 3, pp. 526–534, 1995. View at Google Scholar · View at Scopus
  7. T. Yamada, B. Kluve-Beckerman, W. M. Kuster, J. J. Liepnieks, and M. D. Benson, “Measurement of serum amyloid A4 (SAA4): its constitutive presence in serum,” Amyloid, vol. 1, no. 2, pp. 114–118, 1994. View at Google Scholar · View at Scopus
  8. C. L. Murphy, S. Wang, D. P. Kestler, F. A. Stevens, D. T. Weiss, and A. Solomon, “AA amyloidosis associated with a mutated serum amyloid A4 protein,” Amyloid, vol. 16, no. 2, pp. 84–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Yamada, A. Wada, T. Yamaguchi, and Y. Itoh, “Automated measurement of a constitutive isotype of serum amyloid A/SAA4 and comparison with other apolipoproteins,” Journal of Clinical Laboratory Analysis, vol. 11, pp. 363–368, 1997. View at Google Scholar
  10. Z. N. Farwig, C. J. McNeal, D. Little, C. E. Baisden, and R. D. Macfarlane, “Novel truncated isoforms of constitutive serum amyloid A detected by MALDI mass spectrometry,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 352–356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. D. Pless and W. J. Lennarz, “Enzymatic conversion of proteins to glycoproteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 1, pp. 134–138, 1977. View at Google Scholar · View at Scopus
  12. L. J. McGuffin, K. Bryson, and D. T. Jones, “The PSIPRED protein structure prediction server,” Bioinformatics, vol. 16, no. 4, pp. 404–405, 2000. View at Google Scholar · View at Scopus
  13. J. Garnier, J. F. Gibrat, and B. Robson, “GOR method for predicting protein secondary structure from amino acid sequence,” Methods in Enzymology, vol. 266, pp. 540–553, 1996. View at Google Scholar
  14. T. Yamada, N. Miyake, K. Itoh, and J. Igari, “Further characterization of serum amyloid A4 as a minor acute phase reactant and a possible nutritional marker,” Clinical Chemistry and Laboratory Medicine, vol. 39, no. 1, pp. 7–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Yamada, A. Wada, Y. Itoh, and K. Itoh, “Serum amyloid A1 alleles and plasma concentrations of serum amyloid A,” Amyloid, vol. 6, no. 3, pp. 199–204, 1999. View at Google Scholar · View at Scopus
  16. T. Yamada and A. Wada, “Slower clearance of human SAA1.5 in mice: implications for allele specific variation of SAA concentration in human,” Amyloid, vol. 10, no. 3, pp. 147–150, 2003. View at Google Scholar · View at Scopus
  17. T. Yamada, J. Sato, and Y. Okuda, “Differential affinity of serum amyloid A1 isotypes for high-density lipoprotein,” Amyloid, vol. 16, no. 4, pp. 196–200, 2009. View at Publisher · View at Google Scholar · View at Scopus