Table of Contents
Biotechnology Research International
Volume 2013, Article ID 704806, 9 pages
http://dx.doi.org/10.1155/2013/704806
Research Article

Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

1Institute for Geography and Geology, Ernst-Moritz-Arndt University, F.L. Jahn Strasse 17a, 17489 Greifswald, Germany
2Institute for Microbiology, Ernst-Moritz-Arndt University, F.L. Jahn Strasse 15, 17489 Greifswald, Germany
3School of the Coast & Environment, Louisiana State University, 1165 EC&E Building, Baton Rouge, LA 70803, USA

Received 14 December 2012; Revised 27 May 2013; Accepted 28 May 2013

Academic Editor: Gabriel A. Monteiro

Copyright © 2013 Laurence N. Warr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. TFIS, The Federal Interagency Solutions Group: Oil Budget Calculator Science and Engineering Team. Oil Budget Calculator Technical Documentation, 2010, http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf.
  2. R. M. Atlas and T. C. Hazen, “Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history,” Environmental Science and Technology, vol. 45, no. 16, pp. 6709–6715, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. J. Hamdan and P. A. Fulmer, “Effects of COREXIT EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill,” Aquatic Microbial Ecology, vol. 63, no. 2, pp. 101–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Bragg, R. C. Prince, E. J. Harner, and R. M. Atlas, “Effectiveness of bioremediation for the Exxon Valdez oil spill,” Nature, vol. 368, no. 6470, pp. 413–418, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Atlas, “Petroleum biodegradation and oil spill bioremediation,” Marine Pollution Bulletin, vol. 31, no. 4–12, pp. 178–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. J. Swannell, K. Lee, and M. Mcdonagh, “Field evaluations of marine oil spill bioremediation,” Microbiological Reviews, vol. 60, no. 2, pp. 342–365, 1996. View at Google Scholar · View at Scopus
  7. B. N. Orcutt, S. B. Joye, S. Kleindienst et al., “Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments,” Deep-Sea Research Part II, vol. 57, no. 21–23, pp. 2008–2021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Kostka, O. Prakash, W. A. Overholt et al., “Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill,” Applied and Environmental Microbiology, vol. 77, no. 22, pp. 7962–7974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. C. Prince, “Petroleum spill bioremediation in marine environments,” Critical Reviews in Microbiology, vol. 19, no. 4, pp. 217–242, 1993. View at Google Scholar · View at Scopus
  10. A. D. Venosa, P. Campo, and M. T. Suidan, “Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil Spill,” Environmental Science and Technology, vol. 44, no. 19, pp. 7613–7621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Koren, V. Knezevic, E. Z. Ron, and E. Rosenberg, “Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source,” Applied and Environmental Microbiology, vol. 69, no. 10, pp. 6337–6339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. H. Pritchard, J. G. Mueller, J. C. Rogers, F. V. Kremer, and J. A. Glaser, “Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska,” Biodegradation, vol. 3, no. 2-3, pp. 315–335, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. P. T. Tate, W. S. Shin, J. H. Pardue, and W. A. Jackson, “Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh,” Water, Air, and Soil Pollution, vol. 223, no. 3, pp. 1115–1123, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. B. R. Edwards, C. M. Reddy, R. Camilli, C. A. Carmichael, K. Longnecker, and B. A. S. Van Mooy, “Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico,” Environmental Research Letters, vol. 6, no. 3, Article ID 035301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. E. Bronchart, J. Cadron, A. Charlier, A. A. R. Gillot, and W. Verstraete, “A new approach in enhanced biodegradation of spilled oil: development of an oil dispersant containing oleophilic nutrients,” in Proceedings of the Oil Spill Conference (Prevention, Behavior, Control, Cleanup), J. O. Ludwigson, Ed., vol. 4385, pp. 453–462, The American Petroleum Institute Publication, Los Angeles, Calif, USA, February 1985.
  16. H. H. Murray, “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview,” Applied Clay Science, vol. 17, no. 5-6, pp. 207–221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Van Olphen and J. J. Fripat, Data Handbook For Clay Materials and Other Non-Metallic Minerals, Pergamon Press, New York, NY, USA, 1979.
  18. T. Grygar, J. Dědeček, and D. Hradil, “Analysis of low concentration of free ferric oxides in clays by VIS diffuse reflectance spectroscopy and voltammetry,” Geologica Carpathica, vol. 53, no. 2, pp. 71–77, 2002. View at Google Scholar · View at Scopus
  19. E. Galan, “Properties and applications of palygorskite-sepiolite clays,” Clay Minerals, vol. 31, no. 4, pp. 443–453, 1996. View at Google Scholar · View at Scopus
  20. A. R. Mermut and A. F. Cano, “Baseline studies of the clay minerals society source clays: chemical analyses of major elements,” Clays and Clay Minerals, vol. 49, no. 5, pp. 381–386, 2001. View at Google Scholar · View at Scopus
  21. R. L. Portier and L. M. Basirico, “Laboratory screening of commercial bioremediation agents for the Deepwater Horizon spill response,” Final Report Submitted to RRT-4 and RRT-6 Regional Response Teams, 107 pp., 2011.
  22. J. Iqbal, R. J. Portier, and D. Gisclair, “Aspects of petrochemical pollution in coastal Louisiana, USA,” Marine Pollution Bulletin, vol. 54, no. 6, pp. 792–797, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Iqbal, D. Gisclair, D. J. McMillin, and R. J. Portier, “Aspects of petrochemical pollution in southeastern Louisiana (USA): Pre-Katrina background and source characterization,” Environmental Toxicology and Chemistry, vol. 26, no. 9, pp. 2001–2009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. E. Kostka, O. Prakash, W. A. Overholt et al., “Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill,” Applied and Environmental Microbiology, vol. 77, no. 22, pp. 7962–7974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. C. Hazen, E. A. Dubinsky, T. Z. DeSantis et al., “Deep-sea oil plume enriches indigenous oil-degrading bacteria,” Science, vol. 330, no. 6001, pp. 204–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. K. Vyas and B. P. Dave, “Effect of addition of nitrogen, phosphorus and potassium fertilizers on biodegradation of crude oil by marine bacteria,” Indian Journal of Marine Sciences, vol. 39, no. 1, pp. 143–150, 2010. View at Google Scholar · View at Scopus
  27. E. Briand, O. Pringault, S. Jacquet, and J. P. Torréton, “The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency,” Limnology and Oceanography, vol. 2, pp. 406–416, 2004. View at Google Scholar · View at Scopus
  28. USEPA, “3550c Method,” 2007, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3550c.pdf.
  29. USEPA, “8270d Method,” 2007, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.pdf.
  30. I. C. T. Nisbet and P. K. LaGoy, “Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs),” Regulatory Toxicology and Pharmacology, vol. 16, no. 3, pp. 290–300, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Durant, W. F. Busby Jr., A. L. Lafleur, B. W. Penman, and C. L. Crespi, “Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols,” Mutation Research, vol. 371, no. 3-4, pp. 123–157, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Fenchel and T. H. Blackburn, Bacterial and Mineral Cycling, Academic Press, London, UK, 1979.
  33. L. N. Warr, J. N. Perdrial, M.-C. Lett, A. Heinrich-Salmeron, and M. Khodja, “Clay mineral-enhanced bioremediation of marine oil pollution,” Applied Clay Science, vol. 46, no. 4, pp. 337–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Meyers and J. G. Qujnn, “Association of hydrocarbons and mineral particles in saline solution,” Nature, vol. 244, no. 5410, pp. 23–24, 1973. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Weise, C. Nalewajko, and K. Lee, “Oil-mineral fine interactions facilitate oil biodegradation in seawater,” Environmental Technology, vol. 20, no. 8, pp. 811–824, 1999. View at Google Scholar · View at Scopus
  36. E. H. Owens and K. Lee, “Interaction of oil and mineral fines on shorelines: review and assessment,” Marine Pollution Bulletin, vol. 47, no. 9–12, pp. 397–405, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. C. R. Usher, A. E. Michel, and V. H. Grassian, “Reactions on Mineral Dust,” Chemical Reviews, vol. 103, no. 12, pp. 4883–4939, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Bragg and S. H. Yang, “Clay-oil flocculation and its role in natural cleansing in Prince William Sound following the Exxon Valdez Oil Spill,” in Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, G. Peter Wells, N. James Butler, and S. Jane Hughes, Eds., pp. 178–214, American Society for Testing and Materials, Philadelphia, Pa, USA, 1995. View at Google Scholar
  39. USGS, United States Geological Survey, Mineral commodity summaries, 198 pp., 2012, http://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf.