Table of Contents
Computational Biology Journal
Volume 2013 (2013), Article ID 263973, 14 pages
http://dx.doi.org/10.1155/2013/263973
Research Article

An Approach for Model Reduction of Biochemical Networks

Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan

Received 8 January 2013; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Philip Crooke

Copyright © 2013 Yen-Chang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O. Palsson, Systems Biology: Properties of Reconstructed Networks Systems Biology, Cambridge University Press, New York, NY, USA, 2006.
  2. J. A. Papin, J. L. Reed, and B. O. Palsson, “Hierarchical thinking in network biology: the unbiased modularization of biochemical networks,” Trends in Biochemical Sciences, vol. 29, no. 12, pp. 641–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. E. O. Voit, Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, New York, NY, USA, 2000.
  4. H. Schmidt, M. F. Madsen, S. Danø, and G. Cedersund, “Complexity reduction of biochemical rate expressions,” Bioinformatics, vol. 24, no. 6, pp. 848–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgöwer, and E. D. Gilles, “Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling,” Systems Biology, vol. 1, no. 1, pp. 159–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. N. Gorban, N. Kazantzis, I. G. Kevrekidis, H. C. Ottinger, and C. Theodoropoulos, Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena,, Springer, New York, NY, USA, 2006.
  7. M. A. Savageau and E. O. Voit, “Recasting nonlinear differential equations as S-systems: a canonical nonlinear form,” Mathematical Biosciences, vol. 87, no. 1, pp. 83–115, 1987. View at Google Scholar · View at Scopus
  8. F. S. Wang, C. L. Ko, and E. O. Voit, “Kinetic modeling using S-systems and lin-log approaches,” Biochemical Engineering Journal, vol. 33, no. 3, pp. 238–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Savageau, “Influence of fractal kinetics on molecular recognition,” Journal of Molecular Recognition, vol. 6, no. 4, pp. 149–157, 1993. View at Google Scholar · View at Scopus
  10. I. Famili and B. O. Palsson, “Systemic metabolic reactions are obtained by singular value decomposition of genome-scale stoichiometric matrices,” Journal of Theoretical Biology, vol. 224, no. 1, pp. 87–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. P. Berrar, W. Dubitzky, and M. Granzow, A Practical Approach to Microarray Data Analysis, Kluwer Academic Publishers, Boston, Mass, USA, 2003.
  12. O. Alter, P. O. Brown, and D. Botstein, “Singular value decomposition for genome-wide expression data processing and modeling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 18, pp. 10101–10106, 2000. View at Google Scholar · View at Scopus
  13. N. D. Price, J. L. Reed, J. A. Papin, I. Famili, and B. O. Palsson, “Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices,” Biophysical Journal, vol. 84, no. 2, pp. 794–804, 2003. View at Google Scholar · View at Scopus
  14. G. Liu, M. T. Swihart, and S. Neelamegham, “Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling,” Bioinformatics, vol. 21, no. 7, pp. 1194–1202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Boyer, Concepts in Biochemistry, John Wiley & Sons, New York, NY, USA, 2006.
  16. J. Kim, D. G. Bates, I. Postlethwaite, L. Ma, and P. A. Iglesias, “Robustness analysis of biochemical network models,” IEE Proceedings on Systems Biology, vol. 153, no. 3, pp. 96–104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. T. Laub and W. F. Loomis, “A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3521–3532, 1998. View at Google Scholar · View at Scopus