Table of Contents
Computational Biology Journal
Volume 2014 (2014), Article ID 418069, 5 pages
http://dx.doi.org/10.1155/2014/418069
Research Article

Restricted Boltzmann Machines for Classification of Hepatocellular Carcinoma

1Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
2Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA

Received 21 November 2013; Revised 14 March 2014; Accepted 28 March 2014; Published 14 April 2014

Academic Editor: Rosalia Maglietta

Copyright © 2014 James A. Koziol et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Koziol, J.-Y. Zhang, C. A. Casiano et al., “Recursive partitioning as an approach to selection of immune markers for tumor diagnosis,” Clinical Cancer Research, vol. 9, no. 14, pp. 5120–5126, 2003. View at Google Scholar · View at Scopus
  2. G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Fischer and C. Igel, “An introduction to restricted Boltzmann machines,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, L. Alvarez, Ed., vol. 7441 of Lecture Notes in Computer Science, pp. 14–36, Springer, Berlin, Germany, 2012. View at Google Scholar
  5. A. Fischer and C. Igel, “Training restricted Boltzmann machines: an introduction,” Pattern Recognition, vol. 47, pp. 25–39, 2014. View at Google Scholar
  6. J.-Y. Zhang, E. K. L. Chan, X.-X. Peng, and E. M. Tan, “A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma,” The Journal of Experimental Medicine, vol. 189, no. 7, pp. 1101–1110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Müeller-Pillasch, U. Lacher, C. Wallrapp et al., “Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein,” Oncogene, vol. 14, no. 22, pp. 2729–2733, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Nielsen, J. Christiansen, J. Lykke-Andersen, A. H. Johnsen, U. M. Wewer, and F. C. Nielsen, “A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development,” Molecular and Cellular Biology, vol. 19, no. 2, pp. 1262–1270, 1999. View at Google Scholar · View at Scopus
  9. H. Imai, E. K. L. Chan, K. Kiyosawa, X.-D. Fu, and E. M. Tan, “Novel nuclear autoantigen with splicing factor motifs identified with antibody from hepatocellular carcinoma,” The Journal of Clinical Investigation, vol. 92, no. 5, pp. 2419–2426, 1993. View at Google Scholar · View at Scopus
  10. K. Looi, R. Megliorino, F.-D. Shi, X.-X. Peng, Y. Chen, and J.-Y. Zhang, “Humoral immune response to p16, a cyclin-dependent kinase inhibitor in human malignancies,” Oncology Reports, vol. 16, no. 5, pp. 1105–1110, 2006. View at Google Scholar · View at Scopus
  11. L. S. Hoo, J. Y. Zhang, and E. K. L. Chan, “Cloning and characterization of a novel 90 kDa “companion” auto-antigen of p62 overexpressed in cancer,” Oncogene, vol. 21, no. 32, pp. 5006–5015, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Larochelle and Y. Bengio, “Classification using discriminative restricted boltzmann machines,” in Proceedings of the 25th International Conference on Machine Learning, pp. 536–543, ACM, New York, NY, USA, July 2008. View at Scopus
  13. A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: a comparison of logistic regression and naïve Bayes,” in Advances in Neural Information Processing Systems, T. G. Diettrich, S. Becker, and Z. Ghahramani, Eds., pp. 841–848, MIT Press, Cambridge, Mass, USA, 2001. View at Google Scholar
  14. G. E. Hinton, “A practical guide to training restricted Boltzmann machines,” Tech. Rep. UTML TR 2010-003, Department of Computer Science, University of Toront, 2010, http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf. View at Google Scholar
  15. E. M. Tan, “Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis,” The Journal of Clinical Investigation, vol. 108, no. 10, pp. 1411–1415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. E. M. Tan and J. Y. Zhang, “Autoantibodies to tumor-associated antigens: reporters from the immune system,” Immunological Reviews, vol. 222, no. 1, pp. 328–340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Naggara, J. Raymond, F. Guilbert, D. Roy, A. Weill, and D. G. Altman, “Analysis by categorizing or dichotomizing continuous variables is inadvisable: an example from the natural history of unruptured aneurysms,” American Journal of Neuroradiology, vol. 32, no. 3, pp. 437–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Bennette and A. Vickers, “Against Quantiles: categorization of continuous variables in epidemiologic research, and its discontents,” BMC Medical Research Methodology, vol. 12, article 21, 2012. View at Publisher · View at Google Scholar · View at Scopus