Table of Contents Author Guidelines Submit a Manuscript
Critical Care Research and Practice
Volume 2012, Article ID 301818, 7 pages
http://dx.doi.org/10.1155/2012/301818
Clinical Study

Flow-Synchronized Nasal Intermittent Positive Pressure Ventilation for Infants <32 Weeks' Gestation with Respiratory Distress Syndrome

1Neonatal Intensive Care Unit, Pediatric and Neonatal Department, “S.Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina, Via Ponte Quattro Capi, 39-00186 Rome, Italy
2Pediatric Emergency and Intensive Care, Department of Pediatrics, Policlinico “Umberto I,” Sapienza University of Rome, Viale Regina Elena, 324-00161, Rome, Italy
3SeSMIT-A.Fa.R., Medical Statistics & Information Technology, Fatebenefratelli Association for Biomedical and Sanitary Research, Lungotevere de’ Cenci, 5-00186 Rome, Italy
4L'altrastatistica srl Consultancy & Training, Biostatistics Office, Via Ermino, 16-00174 Rome, Italy

Received 31 August 2012; Accepted 1 November 2012

Academic Editor: Gustavo Rocha

Copyright © 2012 C. Gizzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Morley, P. G. Davis, L. W. Doyle, L. P. Brion, J. M. Hascoet, and J. B. Carlin, “Nasal CPAP or intubation at birth for very preterm infants,” The New England Journal of Medicine, vol. 358, no. 7, pp. 700–708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. N. Finer, W. A. Carlo, M. C. Walsh et al., “Early CPAP versus surfactant in extremely preterm infants,” The New England Journal of Medicine, vol. 362, no. 21, pp. 1970–1979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Dunn, J. Kaempf, A. de Klerk et al., “Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates,” Pediatrics, vol. 128, no. 5, pp. e1069–e1076, 2011. View at Publisher · View at Google Scholar
  4. H. Verder, B. Robertson, G. Greisen et al., “Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome,” The New England Journal of Medicine, vol. 331, no. 16, pp. 1051–1055, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Verder, P. Albertsen, F. Ebbesen et al., “Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation,” Pediatrics, vol. 103, no. 2, article E24, 1999. View at Google Scholar · View at Scopus
  6. C. Dani, G. Bertini, M. Pezzati, A. Cecchi, C. Caviglioli, and F. F. Rubaltelli, “Early extubation and nasal continuous positive airway pressure after surfactant treatment for respiratory distress syndrome among preterm infants<30 weeks' gestation,” Pediatrics, vol. 113, no. 6, pp. e560–563, 2004. View at Google Scholar · View at Scopus
  7. A. Reininger, R. Khalak, J. W. Kendig et al., “Surfactant administration by transient intubation in infants 29 to 35 weeks' gestation with respiratory distress syndrome decreases the likelihood of later mechanical ventilation: a randomized controlled trial,” Journal of Perinatology, vol. 25, no. 11, pp. 703–708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Bohlin, T. Gudmundsdottir, M. Katz-Salamon, B. Jonsson, and M. Blennow, “Implementation of surfactant treatment during continuous positive airway pressure,” Journal of Perinatology, vol. 27, no. 7, pp. 422–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Rojas, J. M. Lozano, M. X. Rojas et al., “Very early surfactant without mandatory ventilation in premature infants treated with early continuous positive airway pressure: a randomized, controlled trial,” Pediatrics, vol. 123, no. 1, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. M. DiBlasi, “Neonatal noninvasive ventilation techniques: do we really need to intubate?” Respiratory Care, vol. 56, no. 9, pp. 1273–1294, 2011. View at Publisher · View at Google Scholar
  11. T. P. Stevens, M. Blennow, and R. F. Soll, “Early surfactant administration with brief ventilation versus selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003063, 2007. View at Google Scholar · View at Scopus
  12. N. M. Kiciman, B. Andréasson, G. Bernstein et al., “Thoracoabdominal motion in newborns during ventilation delivered by endotracheal tube or nasal prongs,” Pediatric Pulmonology, vol. 25, no. 3, pp. 175–181, 1998. View at Publisher · View at Google Scholar
  13. L. S. Owen, C. J. Morley, J. A. Dawson, and P. G. Davis, “Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 96, no. 6, pp. F422–F428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Moretti, C. Gizzi, P. Papoff et al., “Comparing the effects of nasal synchronized intermittent positive pressure ventilation (nSIPPV) and nasal continuous positive airway pressure (nCPAP) after extubation in very low birth weight infants,” Early Human Development, vol. 56, no. 2-3, pp. 167–177, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. H. Aghai, J. G. Saslow, T. Nakhla et al., “Synchronized nasal intermittent positive pressure ventilation (SNIPPV) decreases work of breathing (WOB) in premature infants with respiratory distress syndrome (RDS) compared to nasal continuous positive airway pressure (NCPAP),” Pediatric Pulmonology, vol. 41, no. 9, pp. 875–881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Y. Chang, N. Claure, C. D'Ugard, J. Torres, P. Nwajei, and E. Bancalari, “Effects of synchronization during nasal ventilation in clinically stable preterm infants,” Pediatric Research, vol. 69, no. 1, pp. 84–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Greenough, G. Dimitriou, M. Prendergast, and A. D. Milner, “Synchronized mechanical ventilation for respiratory support in newborn infants,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD000456, 2008. View at Google Scholar · View at Scopus
  18. C. Moretti, L. Giannini, C. Fassi, C. Gizzi, P. Papoff, and P. Colarizi, “Nasal flow-synchronized intermittent positive pressure ventilation to facilitate weaning in very low-birthweight infants: unmasked randomized controlled trial,” Pediatrics International, vol. 50, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Volpe, Neurology of the Newborn, WB Saunders, Philadelphia, Pa, USA, 3rd edition, 1995.
  20. L. S. de Vries, P. Eken, and L. M. S. Dubowitz, “The spectrum of leukomalacia using cranial ultrasound,” Behavioural Brain Research, vol. 49, no. 1, pp. 1–6, 1992. View at Google Scholar · View at Scopus
  21. M. J. Bell, J. L. Ternberg, R. D. Feigin et al., “Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging,” Annals of Surgery, vol. 187, no. 1, pp. 1–7, 1978. View at Google Scholar · View at Scopus
  22. International Committee for Classification of Retinopathy of Prematurity, “The international classification of retinopathy of prematurity revisited,” Archives of Ophthalmology, vol. 123, no. 7, pp. 991–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. The International Neonatal Network, “The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units,” The Lancet, vol. 342, no. 8865, pp. 193–198, 1993. View at Google Scholar
  24. R. H. B. de Courcy-Wheeler, C. D. A. Wolfe, A. Fitzgerald, M. Spencer, J. D. S. Goodman, and H. R. Gamsu, “Use of the CRIB (clinical risk index for babies) score in prediction of neonatal mortality and morbidity,” Archives of Disease in Childhood, vol. 73, no. 1, pp. F32–F36, 1995. View at Google Scholar · View at Scopus
  25. P. O. Kero and E. O. Mäkinen, “Comparison between clinical and radiological classifications of infants with the respiratory distress syndrome (RDS),” European Journal of Pediatrics, vol. 130, no. 4, pp. 271–278, 1979. View at Google Scholar · View at Scopus
  26. M. Bisceglia, A. Belcastro, V. Poerio et al., “A comparison of nasal intermittent versus continuous positive pressure delivery for the treatment of moderate respiratory syndrome in preterm infants,” Minerva Pediatrica, vol. 59, no. 2, pp. 91–95, 2007. View at Google Scholar · View at Scopus
  27. K. J. Barrington, D. Bull, and N. N. Finer, “Randomized trial of nasal synchronized intermittent mandatory ventilation compared with continuous positive airway pressure after extubation of very low birth weight infants,” Pediatrics, vol. 107, no. 4, pp. 638–641, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. C. H. Lin, S. T. Wang, Y. J. Lin, and T. F. Yeh, “Efficacy of nasal intermittent positive pressure ventilation in treating apnea of prematurity,” Pediatric Pulmonology, vol. 26, no. 5, pp. 349–353, 1998. View at Publisher · View at Google Scholar
  29. C. A. Ryan, N. N. Finer, and K. L. Peters, “Nasal intermittent positive-pressure ventilation offers no advantages over nasal continuous positive airway pressure in apnea of prematurity,” American Journal of Diseases of Children, vol. 143, no. 10, pp. 1196–1198, 1989. View at Google Scholar · View at Scopus
  30. T. Pantalitschka, J. Sievers, M. S. Urschitz, T. Herberts, C. Reher, and C. F. Poets, “Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 94, no. 4, pp. F245–F248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kugelman, I. Feferkorn, A. Riskin, I. Chistyakov, B. Kaufman, and D. Bader, “Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study,” Journal of Pediatrics, vol. 150, no. 5, pp. 521.e1–526.e1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Sai Sunil Kishore, S. Dutta, and P. Kumar, “Early nasal intermittent positive pressure ventilation versus continuous positive airway pressure for respiratory distress syndrome,” Acta Paediatrica, vol. 98, no. 9, pp. 1412–1415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Meneses, V. Bhandari, J. G. Alves, and D. Herrmann, “Noninvasive ventilation for respiratory distress syndrome: a randomized controlled trial,” Pediatrics, vol. 127, no. 2, pp. 300–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kulkarni, R. A. Ehrenkranz, and V. Bhandari, “Effect of introduction of synchronized nasal intermittent positive-pressure ventilation in a neonatal intensive care unit on bronchopulmonary dysplasia and growth in preterm infants,” American Journal of Perinatology, vol. 23, no. 4, pp. 233–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Bhandari, R. G. Gavino, J. H. Nedrelow et al., “A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS,” Journal of Perinatology, vol. 27, no. 11, pp. 697–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Bhandari, N. N. Finer, R. A. Ehrenkranz et al., “Synchronized nasal intermittent positive-pressure ventilation and neonatal outcomes,” Pediatrics, vol. 124, no. 2, pp. 517–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Ramanathan, K. C. Sekar, M. Rasmussen, J. Bhatia, and R. F. Soll, “Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants<30 weeks' gestation: a randomized, controlled trial,” Journal of Perinatology, vol. 32, no. 5, pp. 336–343, 2012. View at Google Scholar
  38. M. E. Avery, W. H. Tooley, J. B. Keller et al. et al., “Is chronic lung disease in low birth weight infants preventable? A survey of eight centers,” Pediatrics, vol. 79, no. 1, pp. 26–30, 1987. View at Google Scholar · View at Scopus
  39. L. J. van Marter, E. N. Allred, M. Pagano et al., “Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease?” Pediatrics, vol. 105, no. 6, pp. 1194–1201, 2000. View at Google Scholar · View at Scopus
  40. A. Cherif, C. Hachani, and N. Khrouf, “Risk factors of the failure of surfactant treatment by transient intubation during nasal continuous positive airway pressure in preterm infants,” American Journal of Perinatology, vol. 25, no. 10, pp. 647–652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Vanhaesebrouck, I. Zonnenberg, P. Vandervoort, E. Bruneel, M. R. van Hoestenberghe, and C. Theyskens, “Conservative treatment for patent ductus arteriosus in the preterm,” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 92, no. 4, pp. F244–F247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Dani, I. Corsini, and C. Poggi, “Risk factors for intubation-surfactant-extubation (INSURE) failure and multiple INSURE strategy in preterm infants,” Early Human Development, vol. 88, supplement 1, pp. S3–S4, 2012. View at Publisher · View at Google Scholar