Table of Contents Author Guidelines Submit a Manuscript
Current Gerontology and Geriatrics Research
Volume 2012, Article ID 179318, 11 pages
http://dx.doi.org/10.1155/2012/179318
Research Article

Sterol Lipid Metabolism in Down Syndrome Revisited: Down Syndrome Is Associated with a Selective Reduction in Serum Brassicasterol Levels

1Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
2Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, D-53127 Bonn, Germany
3Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40356, USA

Received 22 October 2011; Accepted 22 February 2012

Academic Editor: Wayne Silverman

Copyright © 2012 Gavin Tansley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. Roizen and D. Patterson, “Down's syndrome,” Lancet, vol. 361, no. 9365, pp. 1281–1289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. E. Nieuwenhuis-Mark, “Diagnosing alzheimer's dementia in down syndrome: problems and possible solutions,” Research in Developmental Disabilities, vol. 30, no. 5, pp. 827–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Patterson, “Molecular genetic analysis of down syndrome,” Human Genetics, vol. 126, no. 1, pp. 195–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, and E. Jones, “Alzheimer's disease,” the Lancet, vol. 377, no. 9770, pp. 1019–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. J. Moore and I. Tabas, “Macrophages in the pathogenesis of atherosclerosis,” Cell, vol. 145, no. 3, pp. 341–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Murdoch, J. C. Rodger, and S. S. Rao, “Down's syndrome: an atheroma free model?” British Medical Journal, vol. 2, no. 6081, pp. 226–228, 1977. View at Google Scholar · View at Scopus
  7. S. Ylä-Herttuala, J. Luoma, T. Nikkari, and T. Kivimaki, “Down's syndrome and atherosclerosis,” Atherosclerosis, vol. 76, no. 2-3, pp. 269–272, 1989. View at Google Scholar · View at Scopus
  8. L. Brattstrõm, E. Englund, and A. Brun, “Does down syndrome support homocysteine theory of arteriosclerosis?” Lancet, vol. 1, no. 8529, pp. 391–392, 1987. View at Google Scholar · View at Scopus
  9. C. C. Draheim, J. R. Geijer, and D. R. Dengel, “Comparison of intima-media thickness of the carotid artery and cardiovascular disease risk factors in adults with versus without the down syndrome,” American Journal of Cardiology, vol. 106, no. 10, pp. 1512–1516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Beange, A. McElduff, and W. Baker, “Medical disorders of adults with mental retardation: a population study,” American Journal on Mental Retardation, vol. 99, no. 6, pp. 595–604, 1995. View at Google Scholar · View at Scopus
  11. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Feinleib, W. B. Kannel, and R. J. Garrison, “The framingham offspring study. design and preliminary data,” Preventive Medicine, vol. 4, no. 4, pp. 518–525, 1975. View at Google Scholar · View at Scopus
  13. J. L. Goldstein and M. S. Brown, “The ldl receptor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 431–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Brown and J. L. Goldstein, “Lowering ldl—not only how low, but how long?” Science, vol. 311, no. 5768, pp. 1721–1723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Alwaili, Z. Awan, A. Alshahrani, and J. Genest, “High-density lipoproteins and cardiovascular disease: 2010 update,” Expert Review of Cardiovascular Therapy, vol. 8, no. 3, pp. 413–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Gordon, W. P. Castelli, W. B. Kannel, and T. R. Dawber, “High density lipoprotein as a protective factor against coronary heart disease,” American Journal of Medicine, vol. 62, pp. 707–714, 1997. View at Google Scholar
  17. A. R. Tall, “Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins,” Journal of Internal Medicine, vol. 263, no. 3, pp. 256–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Cavelier, I. Lorenzi, L. Rohrer, and A. von Eckardstein, “Lipid efflux by the atp-binding cassette transporters abca1 and abcg1,” Biochimica Et Biophysica Acta, vol. 1761, no. 7, pp. 655–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lorkowski, S. Rust, T. Engel et al., “Genomic sequence and structure of the human ABCG1 (ABC8) gene,” Biochemical and Biophysical Research Communications, vol. 280, no. 1, pp. 121–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Li, Y. Zhang, J. Ma, W. Ling, and M. Xia, “Adenosine monophosphate activated protein kinase regulates abcg1-mediated oxysterol efflux from endothelial cells and protects against hypercholesterolemia-induced endothelial dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 7, pp. 1354–1362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Whetzel, J. M. Sturek, M. H. Nagelin et al., “ABCG1 deficiency in mice promotes endotehlial activation and monocyte-endothelial interactions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, pp. 809–817, 2010. View at Google Scholar
  22. M. D. Patel and P. D. Thompson, “Phytosterols and vascular disease,” Atherosclerosis, vol. 186, no. 1, pp. 12–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Y. Ntanios, A. J. Van De Kooij, E. A. M. De Deckere, G. S. M. J. E. Duchateau, and E. A. Trautwein, “Effects of various amounts of dietary plant sterol esters on plasma and hepatic sterol concentration and aortic foam cell formation of cholesterol-fed hamsters,” Atherosclerosis, vol. 169, no. 1, pp. 41–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Fassbender, D. Lutjohann, M. G. Dik et al., “Moderately elevated plant sterol levels are associated with reduced cardiovascular risk—the LASA study,” Atherosclerosis, vol. 196, pp. 283–288, 2008. View at Google Scholar
  25. G. Salen, S. Shefer, L. Nguyen, G. C. Ness, G. S. Tint, and V. Shore, “Sitosterolemia,” Journal of Lipid Research, vol. 33, no. 7, pp. 945–957, 1992. View at Google Scholar · View at Scopus
  26. K. Lu, M. H. Lee, S. Hazard et al., “Two genes that map to the stsl locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively,” American Journal of Human Genetics, vol. 69, no. 2, pp. 278–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Yu, R. E. Hammer, J. Li-Hawkins et al., “Disruption of abcg5 and abcg8 in mice reveals their crucial role in biliary cholesterol secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16237–16242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Sabeva, C. M. McPhaul, X. Li, T. J. Cory, D. J. Feola, and G. A. Graf, “Phytosterols differentially influence abc transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells,” Journal of Nutritional Biochemistry, vol. 22, no. 8, pp. 777–783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Licastro, A. Marocchi, S. Penco et al., “Does down's syndrome support the homocysteine theory of atherogenesis?. experience in elderly subjects with trisomy 21,” Archives of Gerontology and Geriatrics, vol. 43, no. 3, pp. 381–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Braunschweig, S. Gomez, P. Sheean, K. M. Tomey, J. Rimmer, and T. Heller, “Nutritional status and risk factors for chronic disease in urban-dwelling adults with Down syndrome,” American Journal Of Mental Retardation, vol. 109, pp. 186–193, 2004. View at Google Scholar
  31. C. C. Draheim, J. A. McCubbin, and D. P. Williams, “Differences in cardiovascular disease risk between nondiabetic adults with mental retardation with and without Down syndrome,” American Journal Of Mental Retardation, vol. 107, pp. 201–211, 2002. View at Google Scholar
  32. Y. Nishida, I. Akaoka, and T. Nishizawa, “Hyperlipidaemia in patients with down's syndrome,” Atherosclerosis, vol. 26, no. 3, pp. 369–372, 1977. View at Google Scholar · View at Scopus
  33. K. Dorner, A. S. Gaethke, and M. Tolksdorf, “Cholesterol fractions and triglycerides in children and adults with down's syndrome,” Clinica Chimica Acta, vol. 142, no. 3, pp. 307–311, 1984. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Hardy, “Amyloid, the presenilins and alzheimer's disease,” Trends in Neurosciences, vol. 20, no. 4, pp. 154–159, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. P. T. Nelson, H. Braak, and W. R. Markesberry, “Neuropathology and cognitive impairment in Alzheimer's Disease: a complex but coherent relationship,” Journal of Neuropathology & Experimental Neurology, vol. 68, pp. 1–14, 2009. View at Google Scholar
  36. R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of alzheimer's disease: recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 280–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. J. Epstein, “Down Syndrome,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., pp. 1223–1256, McGraw Hill, New York, NY, USA, 8th edition, 2001. View at Google Scholar
  38. Y. Arai, A. Suzuki, M. Mizuguchi, and S. Takashima, “Developmental and aging changes in the expression of amyloid precursor protein in down syndrome brains,” Brain and Development, vol. 19, no. 4, pp. 290–294, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Argellati, S. Massone, C. D'Abramo et al., “Evidence against the overexpression of app in down syndrome,” IUBMB Life, vol. 58, no. 2, pp. 103–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. A. Gyure, R. Durham, W. F. Stewart, J. E. Smialek, and J. C. Troncoso, “Intraneuronal aβ-amyloid precedes development of amyloid plaques in down syndrome,” Archives of Pathology and Laboratory Medicine, vol. 125, no. 4, pp. 489–492, 2001. View at Google Scholar · View at Scopus
  41. P. D. Mehta, A. J. Dalton, S. P. Mehta, K. S. Kim, E. A. Sersen, and H. M. Wisniewski, “Increased plasma amyloid β protein 1-42 levels in down syndrome,” Neuroscience Letters, vol. 241, no. 1, pp. 13–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Runz, J. Rietdorf, I. Tomic et al., “Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells,” Journal of Neuroscience, vol. 22, no. 5, pp. 1679–1689, 2002. View at Google Scholar · View at Scopus
  43. S. Bodovitz and W. L. Klein, “Cholesterol modulates α-secretase cleavage of amyloid precursor protein,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4436–4440, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. G. P. Eckert, N. J. Cairns, A. Maras, W. F. Gattaz, and W. E. Müller, “Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 11, no. 4, pp. 181–186, 2000. View at Google Scholar · View at Scopus
  45. E. Kojro, G. Gimpl, S. Lammich, W. März, and F. Fahrenholz, “Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase adam 10,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5815–5820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Jiang, C. Y. D. Lee, S. Mandrekar et al., “Apoe promotes the proteolytic degradation of aβ,” Neuron, vol. 58, no. 5, pp. 681–693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. W. Mahley and S. C. Rall, “Apolipoprotein e: far more than a lipid transport protein,” Annual Review of Genomics and Human Genetics, vol. 1, no. 2000, pp. 507–537, 2000. View at Google Scholar · View at Scopus
  48. E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein e type 4 allele and the risk of alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993. View at Google Scholar · View at Scopus
  49. E. H. Corder, A. M. Saunders, N. J. Risch et al., “Protective effect of apolipoprotein e type 2 allele for late onset alzheimer disease,” Nature Genetics, vol. 7, no. 2, pp. 180–184, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. U. Finckh, “The future of genetic association studies in alzheimer disease,” Journal of Neural Transmission, vol. 110, no. 3, pp. 253–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Fan, J. Donkin, and C. Wellington, “Greasing the wheels of aβ clearance in alzheimer's disease: the role of lipids and apolipoprotein E,” Biofactors, vol. 35, no. 3, pp. 239–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Hirsch-Reinshagen, L. F. Maia, B. L. Burgess et al., “The absence of ABCA1 decreases soluble apoe levels but does not diminish amyloid deposition in two murine models of alzheimer disease,” Journal of Biological Chemistry, vol. 280, no. 52, pp. 43243–43256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Wahrle, H. Jiang, M. Parsadanian et al., “Deletion of abca1 increases aβ deposition in the pdapp transgenic mouse model of alzheimer disease,” Journal of Biological Chemistry, vol. 280, no. 52, pp. 43236–43242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Koldamova, M. Staufenbiel, and I. Lefterov, “Lack of ABCA1 considerably decreases brain apoe level and increases amyloid deposition in APP23 mice,” Journal of Biological Chemistry, vol. 280, no. 52, pp. 43224–43235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. E. Wahrle, H. Jiang, M. Parsadanian et al., “Overexpression of abca1 reduces amyloid deposition in the pdapp mouse model of alzheimer disease,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 671–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Kivipelto, E. L. Helkala, M. P. Laakso et al., “Apolipoprotein e ε4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life alzheimer disease,” Annals of Internal Medicine, vol. 137, no. 3, pp. 149–155, 2002. View at Google Scholar · View at Scopus
  57. M. Kivipelto, E. L. Helkala, M. P. Laakso et al., “Midlife vascular risk factors and alzheimer's disease in later life: longitudinal, population based study,” BMJ, vol. 322, no. 7300, pp. 1447–1451, 2001. View at Google Scholar · View at Scopus
  58. M. Kivipelto, M. P. Laakso, J. Tuomilehto, A. Nissinen, and H. Soininen, “Hypertension and hypercholesterolaemia as risk factors for alzheimer's disease: potential for pharmacological intervention,” CNS Drugs, vol. 16, no. 7, pp. 435–444, 2002. View at Google Scholar · View at Scopus
  59. M. Kivipelto, T. Ngandu, L. Fratiglioni et al., “Obesity and vascular risk factors at midlife and the risk of dementia and alzheimer disease,” Archives of Neurology, vol. 62, no. 10, pp. 1556–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Kivipelto and A. Solomon, “Cholesterol as a risk factor for alzheimer's disease - epidemiological evidence,” Acta Neurologica Scandinavica, vol. 114, no. 185, pp. 50–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Dietschy and S. D. Turley, “Cholesterol metabolism in the brain,” Current Opinion in Lipidology, vol. 12, no. 2, pp. 105–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. T. L. Lewis, D. Cao, H. Lu et al., “Overexpression of human apolipoprotein a-i preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of alzheimer disease,” Journal of Biological Chemistry, vol. 285, no. 47, pp. 36958–36968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Lefterov, N. F. Fitz, A. A. Cronican et al., “Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1E9 mice,” Journal of Biological Chemistry, vol. 285, no. 47, pp. 36945–36957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Han, S. Rozen, S. H. Boyle et al., “Metabolomics in early alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics,” Plos One, vol. 6, no. 7, Article ID e21643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Jick, G. L. Zornberg, S. S. Jick, S. Seshadri, and D. A. Drachman, “Statins and the risk of dementia,” Lancet, vol. 356, no. 9242, pp. 1627–1631, 2000. View at Google Scholar · View at Scopus
  66. B. Wolozin, W. Kellman, P. Ruosseau, G. G. Celesia, and G. Siegel, “Decreased prevalence of alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme a reductase inhibitors,” Archives of Neurology, vol. 57, no. 10, pp. 1439–1443, 2000. View at Google Scholar · View at Scopus
  67. B. Wolozin, S. W. Wang, N. C. Li, A. Lee, T. A. Lee, and L. E. Kazis, “Simvastatin is associated with a reduced incidence of dementia and parkinson's disease,” BMC Medicine, vol. 5, article no. 20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. B. McGuinness, D. Craig, R. Bullock, and P. Passmore, “Statins for the prevention of dementia,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD003160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Sano, K. L. Bell, D. Galasko et al., “A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease,” Neurology, vol. 77, pp. 556–563, 2011. View at Google Scholar
  70. C. R. Jack Jr., P. Vemuri, H. J. Wiste et al., “Evidence for ordering of Alzheimer Disease biomarkers,” Archives of Neurology, vol. 68, no. 12, pp. 1526–1535, 2011. View at Google Scholar
  71. T. Vanmierlo, J. Popp, H. Kolsch et al., “The plant sterol brassicasterol as an additional CSF biomarker in Alzheimer's disease,” Acta Psychiatrica Scandinavica. Supplementum, vol. 124, pp. 184–192, 2011. View at Google Scholar
  72. C. E. Teunissen, J. De Vente, K. Von Bergmann et al., “Serum cholesterol, precursors and metabolites and cognitive performance in an aging population,” Neurobiology of Aging, vol. 24, no. 1, pp. 147–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Lütjohann, M. Stroick, T. Bertsch et al., “High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs,” Steroids, vol. 69, no. 6, pp. 431–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Bjorkhem, D. Lutjohann, U. Diczfalusy, L. Stahle, G. Ahlborg, and J. Wahren, “Cholesterol homeostasis in the human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation,” Journal of Lipid Research, vol. 39, pp. 1594–1600, 1998. View at Google Scholar
  75. D. Lütjohann and K. Von Bergmann, “24s-hydroxycholesterol: a marker of brain cholesterol metabolism,” Pharmacopsychiatry, vol. 36, supplement 2, pp. S102–S106, 2003. View at Google Scholar · View at Scopus
  76. RB Chan, TG Oliveria, EP Cortes et al., “Comparative lipidomic analysis of mouse and human brain with Alzheimer disease,” The Journal of Biological Chemistry, vol. 287, pp. 2678–2688, 2011. View at Google Scholar
  77. A. Thomas, S. Lenglet, P. Chaurand et al., “Mass spectrometry for the evaluation of cardiovascular disease based on proteomics and lipidomics,” Thrombosis and Haemostasis, vol. 106, pp. 20–33, 2011. View at Google Scholar
  78. B. R. Carr, W. E. Rainey, and J. I. Mason, “3-hydroxy-3-methylglutaryl coenzyme a reductase in anencephalic and normal human fetal liver,” Journal of Clinical Investigation, vol. 76, no. 5, pp. 1946–1949, 1985. View at Google Scholar · View at Scopus
  79. L. Bocconi, S. Nava, R. Fogliani, and U. Nicolini, “Trisomy 21 is associated with hypercholesterolemia during intrauterine life,” American Journal of Obstetrics and Gynecology, vol. 176, no. 3, pp. 540–543, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Diomede, M. Salmona, D. Albani et al., “Alteration of srebp activation in liver of trisomy 21 fetuses,” Biochemical and Biophysical Research Communications, vol. 260, no. 2, pp. 499–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Baldan, P. Tarr, R. Lee, and P. A. Edwards, “Atp-binding cassette transporter g1 and lipid homeostasis,” Current Opinion in Lipidology, vol. 17, no. 3, pp. 227–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Basso, M. J. Amar, E. M. Wagner et al., “Enhanced ABCG1 expression increases atherosclerosis in LDLr-KO mice on a western diet,” Biochemical and Biophysical Research Communications, vol. 351, no. 2, pp. 398–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Ranalletta, N. Wang, S. Han, L. Yvan-Charvet, C. Welch, and A. R. Tall, “Decreased atherosclerosis in low-density lipoprotein receptor knockout mice transplanted with Abcg1-/- bone marrow,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2308–2315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Burgess, K. Naus, J. Chan et al., “Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, pp. 1731–1737, 2008. View at Google Scholar