Table of Contents Author Guidelines Submit a Manuscript
Current Gerontology and Geriatrics Research
Volume 2012 (2012), Article ID 184042, 5 pages
http://dx.doi.org/10.1155/2012/184042
Research Article

Dyslipidemia and Blood-Brain Barrier Integrity in Alzheimer's Disease

1Department of Neurology, Oregon Health and Science University, 3181 Southwest Samuel Jackson Park Road, Portland, OR 97239, USA
2Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
3The Portland Veteran Affairs Medical Center, Portland, OR, USA

Received 21 December 2011; Accepted 27 January 2012

Academic Editor: Andrea Fuso

Copyright © 2012 Gene L. Bowman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Link and G. Tibbling, “Principles of albumin and IgG analyses in neurological disorders. II. Relation of the concentration of the proteins in serum and cerebrospinal fluid,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 37, no. 5, pp. 391–396, 1977. View at Google Scholar · View at Scopus
  2. I. Skoog, A. Wallin, P. Fredman et al., “A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer's disease and vascular dementia,” Neurology, vol. 50, no. 4, pp. 966–971, 1998. View at Google Scholar · View at Scopus
  3. G. L. Bowman, J. A. Kaye, M. Moore, D. Waichunas, N. E. Carlson, and J. F. Quinn, “Blood-brain barrier impairment in Alzheimer disease: stability and functional significance,” Neurology, vol. 68, no. 21, pp. 1809–1814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Bell and B. V. Zlokovic, “Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 1, pp. 103–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. V. Zlokovic, An Introduction to the Blood-Brain Barrier, CRC Press, Boca Raton, Fla, USA, 1993.
  6. D. J. Begley and M. W. Brightman, “Structural and functional aspects of the blood-brain barrier,” Progress in Drug Research, vol. 61, pp. 39–78, 2003. View at Google Scholar · View at Scopus
  7. J. C. de la Torre, “Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” The Lancet Neurology, vol. 3, no. 3, pp. 184–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Lehmann, B. Regland, K. Blennow, and C. G. Gottfries, “Vitamin B12-B6-folate treatment improves blood-brain barrier function in patients with hyperhomocysteinaemia and mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 16, no. 3, pp. 145–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Refolo, M. A. Pappolla, B. Malester et al., “Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model,” Neurobiology of Disease, vol. 7, no. 4, pp. 321–331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Google Scholar
  11. G. Dooneief, K. Marder, M. X. Tang, and Y. Stern, “The clinical dementia rating scale: community-based validation of “profound' and “terminal' stages,” Neurology, vol. 46, no. 6, pp. 1746–1749, 1996. View at Google Scholar · View at Scopus
  12. J. T. Moroney, E. Bagiella, D. W. Desmond et al., “Meta-analysis of the Hachinski ischemic score in pathologically verified dementias,” Neurology, vol. 49, no. 4, pp. 1096–1105, 1997. View at Google Scholar · View at Scopus
  13. J. A. Yesavage, T. L. Brink, and T. L. Rose, “Development and validation of a geriatric depression screening scale: a preliminary report,” Journal of Psychiatric Research, vol. 17, no. 1, pp. 37–49, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. Lipid Research Clinics Program, Manual of Laboratory Operations, Lipid and Lipoprotein Analysis, Edited by Resources DoHaH, National Heart, Lung and Blood Institute, Bethesda, Md, USA, 1982.
  15. “Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report,” Circulation, vol. 106, no. 25, pp. 3143–3421, 2002.
  16. S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Raffaitin, H. Gin, J. P. Empana et al., “Metabolic syndrome and risk for incident Alzheimer's disease or vascular dementia: the Three-City study,” Diabetes Care, vol. 32, no. 1, pp. 169–174, 2009. View at Google Scholar
  18. D. Mozaffarian and J. H. Wu, “Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events,” Journal of the American College of Cardiology, vol. 58, no. 20, pp. 2047–2067, 2011. View at Google Scholar
  19. G. Salen, V. Berginer, and V. Shore, “Increased concentrations of cholestanol and apolipoprotein B in the cerebrospinal fluid of patients with cerebrotendinous xanthomatosis. Effect of chenodeoxycholic acid,” The New England Journal of Medicine, vol. 316, no. 20, pp. 1233–1238, 1987. View at Google Scholar · View at Scopus
  20. S. Lamon-Fava, M. R. Diffenderfer, P. H. Barrett et al., “Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1672–1678, 2008. View at Google Scholar