Table of Contents Author Guidelines Submit a Manuscript
Current Gerontology and Geriatrics Research
Volume 2012, Article ID 826398, 7 pages
http://dx.doi.org/10.1155/2012/826398
Research Article

Sarcopenic Obesity and Cognitive Functioning: The Mediating Roles of Insulin Resistance and Inflammation?

Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA

Received 5 November 2011; Revised 31 January 2012; Accepted 15 February 2012

Academic Editor: Fabio Coppedè

Copyright © 2012 M. E. Levine and E. M. Crimmins. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Gustafson, L. Lissner, C. Bengtsson, C. Björkelund, and I. Skoog, “A 24-year follow-up of body mass index and cerebral atrophy,” Neurology, vol. 63, no. 10, pp. 1876–1881, 2004. View at Google Scholar · View at Scopus
  2. D. R. Gustafson, B. Steen, and I. Skoog, “Body mass index and white matter lesions in elderly women. An 18-year longitudinal study,” International Psychogeriatrics, vol. 16, no. 3, pp. 327–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Wolf, A. Beiser, M. F. Elias, R. Au, R. S. Vasan, and S. Seshadri, “Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham heart study,” Current Alzheimer Research, vol. 4, no. 2, pp. 111–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Sturman, C. F. M. De Leon, J. L. Bienias, M. C. Morris, R. S. Wilson, and D. A. Evans, “Body mass index and cognitive decline in a biracial community population,” Neurology, vol. 70, no. 5, pp. 360–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Elia, P. Ritz, and R. J. Stubbs, “Total energy expenditure in the elderly,” European Journal of Clinical Nutrition, vol. 54, no. 3, pp. S92–S103, 2000. View at Google Scholar · View at Scopus
  6. T. Rantanen, K. Masaki, D. Foley, G. Izmirlian, L. White, and J. M. Guralnik, “Grip strength changes over 27 yr in Japanese-American men,” Journal of Applied Physiology, vol. 85, no. 6, pp. 2047–2053, 1998. View at Google Scholar · View at Scopus
  7. E. J. Bassey, “Longitudinal changes in selected physical capabilities: muscle strength, flexibility and body size,” Age and Ageing, vol. 27, no. 3, pp. 12–16, 1998. View at Google Scholar · View at Scopus
  8. A. Rissanen, M. Heliövaara, and A. Aromaa, “Overweight and anthropometric changes in adulthood: a prospective study of 17 000 Finns,” International Journal of Obesity, vol. 12, no. 5, pp. 391–401, 1988. View at Google Scholar · View at Scopus
  9. S. W. Coppack, “Pro-inflammatory cytokines and adipose tissue,” Proceedings of the Nutrition Society, vol. 60, no. 3, pp. 349–356, 2001. View at Google Scholar · View at Scopus
  10. E. Pasini, R. Aquilani, F. S. Dioguardi, G. D'Antona, M. Gheorghiade, and H. Taegtmeyer, “Hypercatabolic Syndrome: molecular basis and effects of nutritional supplements with amino acids,” American Journal of Cardiology, vol. 101, no. 11, pp. S11–S15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Marette, “Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 5, no. 4, pp. 377–383, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. V. Narici and N. Maffulli, “Sarcopenia: characteristics, mechanisms and functional significance,” British Medical Bulletin, vol. 95, no. 1, pp. 139–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. Schram, S. M. Euser, A. J. M. De Craen et al., “Systemic markers of inflammation and cognitive decline in old age,” Journal of the American Geriatrics Society, vol. 55, no. 5, pp. 708–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Yaffe, A. Kanaya, K. Lindquist et al., “The metabolic syndrome, inflammation, and risk of cognitive decline,” JAMA, vol. 292, no. 18, pp. 2237–2242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Abbatecola, G. Paolisso, M. Lamponi et al., “Insulin resistance and executive dysfunction in older persons,” Journal of the American Geriatrics Society, vol. 52, no. 10, pp. 1713–1718, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. S. Guo, C. Zeller, W. C. Chumlea, and R. M. Siervogel, “Aging, body composition, and lifestyle: the Fels Longitudinal Study,” American Journal of Clinical Nutrition, vol. 70, no. 3, pp. 405–411, 1999. View at Google Scholar · View at Scopus
  17. N. A. Bishop, T. Lu, and B. A. Yankner, “Neural mechanisms of ageing and cognitive decline,” Nature, vol. 464, no. 7288, pp. 529–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data, Department of Health and Human Services, Centers for Disease Control and Prevention, Hyattsville, Md, USA, 2004.
  19. M. E. Lean, T. S. Han, and C. E. Morrison, “Waist circumference as a measure for indicating need for weight management,” British Medical Journal, vol. 311, no. 6998, pp. 158–161, 1995. View at Google Scholar · View at Scopus
  20. M. Stumvoll, A. Mitrakou, W. Pimenta et al., “Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity,” Diabetes Care, vol. 23, no. 3, pp. 295–301, 2000. View at Google Scholar · View at Scopus
  21. M. Emoto, Y. Nishizawa, K. Maekawa et al., “Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas,” Diabetes Care, vol. 22, no. 5, pp. 818–822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  23. A. Koster, B. W. J. H. Penninx, H. Bosma et al., “Socioeconomic differences in cognitive decline and the role of biomedical factors,” Annals of Epidemiology, vol. 15, no. 8, pp. 564–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. F. Horber, B. Gruber, F. Thomi, E. X. Jensen, and P. Jaeger, “Effect of sex and age on bone mass, body composition and fuel metabolism in humans,” Nutrition, vol. 13, no. 6, pp. 524–534, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Artero, M. L. Ancelin, F. Portet et al., “Risk profiles for mild cognitive impairment and progression to dementia are gender specific,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 9, pp. 979–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Sofi, D. Valecchi, D. Bacci et al., “Physical activity and risk of cognitive decline: a meta-analysis of prospective studies,” Journal of Internal Medicine, vol. 269, no. 1, pp. 107–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. K. Naderali, S. H. Ratcliffe, and M. C. Dale, “Obesity and alzheimer?s disease: a link between body weight and cognitive function in old age,” American Journal of Alzheimer's Disease and other Dementias, vol. 24, no. 6, pp. 445–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. M. Krauss, M. Winston, B. J. Fletcher, and S. M. Grundy, “Obesity: impact on cardiovascular disease,” Circulation, vol. 98, no. 14, pp. 1472–1476, 1998. View at Google Scholar · View at Scopus
  29. R. A. Cohen, A. Poppas, D. E. Forman et al., “Vascular and cognitive functions associated with cardiovascular disease in the elderly,” Journal of Clinical and Experimental Neuropsychology, vol. 31, no. 1, pp. 96–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. P. M. Ueland, H. Refsum, S. P. Stabler, M. R. Malinow, A. Andersson, and R. H. Allen, “Total homocysteine in plasma or serum: methods and clinical applications,” Clinical Chemistry, vol. 39, no. 9, pp. 1764–1779, 1993. View at Google Scholar · View at Scopus
  31. F. R. Herrmann, C. Safran, S. E. Levkoff, and K. L. Minaker, “Serum albumin level on admission as a predictor of death, length of stay, and readmission,” Archives of Internal Medicine, vol. 152, no. 1, pp. 125–130, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Corti, J. M. Guralnik, M. E. Salive, and J. D. Sorkin, “Serum albumin level and physical disability as predictors of mortality in older persons,” JAMA, vol. 272, no. 13, pp. 1036–1042, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. D. B. Reuben, A. A. Moore, M. Damesyn, E. Keeler, G. G. Harrison, and G. A. Greendale, “Correlates of hypoalbuminemia in community-dwelling older persons,” American Journal of Clinical Nutrition, vol. 66, no. 1, pp. 38–45, 1997. View at Google Scholar · View at Scopus
  34. Institute of Medicine (US), Committee on Nutritional Services for Medicare Beneficiaries, The Role of Nutrition in Maintaining Health in the Nation's Elderly, National Academy Press, Washington, DC, USA, 1999.
  35. M. E. Canon and E. M. Crimmins, “Sex differences in the association between muscle quality, inflammatory markers, and cognitive decline,” Journal of Nutrition, Health and Aging, vol. 15, no. 8, pp. 695–698, 2011. View at Publisher · View at Google Scholar
  36. F. S. Facchini, N. Hua, F. Abbasi, and G. M. Reaven, “Insulin resistance as a predictor of age-related diseases,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3574–3578, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Tosun, N. Schuff, C. A. Mathis, W. Jagust, and M. W. Weiner, “Spatial patterns of brain amyloid-β burden and atrophy rate associations in mild cognitive impairment,” Brain, vol. 134, no. 4, pp. 1077–1088, 2011. View at Publisher · View at Google Scholar
  38. W. Farris, S. Mansourian, M. A. Leissring et al., “Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein,” American Journal of Pathology, vol. 164, no. 4, pp. 1425–1434, 2004. View at Google Scholar · View at Scopus
  39. J. I. Barzilay, C. Blaum, T. Moore et al., “Insulin resistance and inflammation as precursors of frailty: the cardiovascular health study,” Archives of Internal Medicine, vol. 167, no. 7, pp. 635–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Volpi, B. Mittendorfer, B. B. Rasmussen, and R. R. Wolfe, “The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4481–4490, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Boirie, K. R. Short, B. Ahlman, M. Charlton, and K. S. Nair, “Tissue-specific regulation of mitochondrial and cytoplasmic protein synthesis rates by insulin,” Diabetes, vol. 50, no. 12, pp. 2652–2658, 2001. View at Google Scholar · View at Scopus
  42. R. Roubenoff, “Sarcopenic obesity: the confluence of two epidemics,” Obesity Research, vol. 12, no. 6, pp. 887–888, 2004. View at Google Scholar · View at Scopus