Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2009, Article ID 760364, 12 pages
http://dx.doi.org/10.1155/2009/760364
Research Article

The Role of Computational Fluid Dynamics in the Management of Unruptured Intracranial Aneurysms: A Clinicians' View

1Departments of Medical Physics and Neurosurgery, Royal Hallamshire Hospital, Sheffield, UK
2Academic Unit of Medical Physics, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
3Department of Neuroradiology, Royal Hallamshire Hospital, Sheffield, UK
4NEC Laboratories Europe, NEC Europe Ltd., 53757 St. Augustin, Germany
5Clinic of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospital, 1211 Geneva, Switzerland
6Biomedicine Communication Technologies Department, Center for Computational Imaging & Simulation Technologies, Pompeu Fabra University, Barcelona, Spain
7Department of Neuroradiology, Institute of Radiology, University Hospital Basel, Petersgraben, Basel, Switzerland
8Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield, UK

Received 11 February 2009; Revised 24 April 2009; Accepted 9 June 2009

Academic Editor: Francois Vialatte

Copyright © 2009 Pankaj K. Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Unruptured intracranial aneurysms—risk of rupture and risks of surgical intervention. International Study of Unruptured Intracranial Aneurysms Investigators,” The New England Journal of Medicine, vol. 339, pp. 1725–1733, 1998.
  2. S. Juvela, “Treatment options of unruptured intracranial aneurysms,” Stroke, vol. 35, no. 2, pp. 372–374, 2004. View at Publisher · View at Google Scholar
  3. T. W. M. Raaymakers, G. J. E. Rinkel, M. Limburg, and A. Algra, “Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis,” Stroke, vol. 29, no. 8, pp. 1531–1538, 1998. View at Google Scholar
  4. D. O. Wiebers, J. P. Whisnant, J. Huston III et al., “Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment,” The Lancet, vol. 362, no. 9378, pp. 103–110, 2003. View at Publisher · View at Google Scholar
  5. A. C. Burleson and V. T. Turitto, “Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior: on behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH,” Thrombosis and Haemostasis, vol. 76, no. 1, pp. 118–123, 1996. View at Google Scholar
  6. J. V. Byrne and G. Guglielmi, Endovascular Treatment of Intracranial Aneurysms, Springer, New York, NY, USA, 1998.
  7. L. Gao, Y. Hoi, D. D. Swartz, J. Kolega, A. Siddiqui, and H. Meng, “Nascent aneurysm formation at the basilar terminus induced by hemodynamics,” Stroke, vol. 39, no. 7, pp. 2085–2090, 2008. View at Publisher · View at Google Scholar
  8. M. Morimoto, S. Miyamoto, A. Mizoguchi, N. Kume, T. Kita, and N. Hashimoto, “Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes,” Stroke, vol. 33, no. 7, pp. 1911–1915, 2002. View at Publisher · View at Google Scholar
  9. M. Shojima, M. Oshima, K. Takagi et al., “Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms,” Stroke, vol. 35, no. 11, pp. 2500–2505, 2004. View at Publisher · View at Google Scholar
  10. D. A. Steinman, J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth, “Image-based computational simulation of flow dynamics in a giant intracranial aneurysm,” American Journal of Neuroradiology, vol. 24, no. 4, pp. 559–566, 2003. View at Google Scholar
  11. L. Boussel, V. Rayz, C. McCulloch et al., “Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study,” Stroke, vol. 39, no. 11, pp. 2997–3002, 2008. View at Publisher · View at Google Scholar
  12. M. A. Castro, C. M. Putman, and J. R. Cebral, “Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics,” American Journal of Neuroradiology, vol. 27, no. 8, pp. 1703–1709, 2006. View at Google Scholar
  13. J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. Frangi, “Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity,” IEEE Transactions on Medical Imaging, vol. 24, no. 4, pp. 457–467, 2005. View at Publisher · View at Google Scholar
  14. J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman, “Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models,” American Journal of Neuroradiology, vol. 26, no. 10, pp. 2550–2559, 2005. View at Google Scholar
  15. A. Mantha, C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe, “Hemodynamics in a cerebral artery before and after the formation of an aneurysm,” American Journal of Neuroradiology, vol. 27, no. 5, pp. 1113–1118, 2006. View at Google Scholar
  16. Description of Work. @neurIST, “Integrated Biomedical Informatics for the management of cerebral aneurysms,” Sixth Framework Programme, Priority 2. Information Society Technologies. Project Identifier: IST-2004-027703.
  17. M. Viceconti, L. Astolfi, A. Leardini et al., “The multimod application framework,” in Proceedings of the 8th International Conference on Information Visualisation (IV '04), pp. 15–20, 2004.
  18. P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, “Validation of 1D model of the systemic arterial tree including the cerebral circulation,” in Proceedings of the Summer Bioengineering Conference (SBC '08), Proceedings of ASME, Marco Island, Fla, USA, 2008.
  19. M. D. Ford, H. N. Nikolov, J. S. Milner et al., “PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models,” Journal of Biomechanical Engineering, vol. 130, no. 2, Article ID 021015, 2008. View at Publisher · View at Google Scholar
  20. A. D. Jeays, P. V. Lawford, R. Gillott et al., “Characterisation of the haemodynamics of the superior mesenteric artery,” Journal of Biomechanics, vol. 40, no. 9, pp. 1916–1926, 2007. View at Publisher · View at Google Scholar
  21. A. M. Malek, S. L. Alper, and S. Izumo, “Hemodynamic shear stress and its role in atherosclerosis,” The Journal of the American Medical Association, vol. 282, no. 21, pp. 2035–2042, 1999. View at Publisher · View at Google Scholar
  22. S. Juvela, M. Porras, and K. Poussa, “Natural history of unruptured intracranial aneurysms: probability and risk factors for aneurysm rupture,” Neurosurgical Focus, vol. 8, no. 5, preview 1, 2000. View at Google Scholar
  23. R. J. Komotar, J. Mocco, and R. A. Solomon, “Guidelines for the surgical treatment of unruptured intracranial aneurysms: the first annual J. Lawrence pool memorial research symposium—controversies in the management of cerebral aneurysms,” Neurosurgery, vol. 62, no. 1, pp. 183–193, 2008. View at Publisher · View at Google Scholar
  24. M. R. Mayberg, H. H. Batjer, R. Dacey et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Stroke, vol. 25, no. 11, pp. 2315–2328, 1994. View at Google Scholar
  25. R. K. Khanna, G. M. Malik, and N. Qureshi, “Predicting outcome following surgical treatment of unruptured intracranial aneurysms: a proposed grading system,” Journal of Neurosurgery, vol. 84, no. 1, pp. 49–54, 1996. View at Google Scholar
  26. R. A. Solomon, M. E. Fink, and J. Pile-Spellman, “Surgical management of unruptured intracranial aneurysms,” Journal of Neurosurgery, vol. 80, no. 3, pp. 440–446, 1994. View at Google Scholar
  27. F. P. Wirth, E. R. Laws Jr., D. Piepgras, and R. M. Scott, “Surgical treatment of incidental intracranial aneurysms,” Neurosurgery, vol. 12, no. 5, pp. 507–511, 1983. View at Google Scholar
  28. N. Yasui, S. Magarisawa, A. Suzuki, H. Nishimura, T. Okudera, and T. Abe, “Subarachnoid hemorrhage caused by previously diagnosed, previously unruptured intracranial aneurysms: a retrospective analysis of 25 cases,” Neurosurgery, vol. 39, no. 6, pp. 1096–1101, 1996. View at Publisher · View at Google Scholar
  29. S. Juvela, M. Porras, and O. Heiskanen, “Natural history of unruptured intracranial aneurysms: a long-term follow- up study,” Journal of Neurosurgery, vol. 79, no. 2, pp. 174–182, 1993. View at Google Scholar
  30. S. Fukuda, N. Hashimoto, H. Naritomi et al., “Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase,” Circulation, vol. 101, no. 21, pp. 2532–2538, 2000. View at Google Scholar
  31. L.-D. Jou, D. H. Lee, H. Morsi, and M. E. Mawad, “Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery,” American Journal of Neuroradiology, vol. 29, no. 9, pp. 1761–1767, 2008. View at Publisher · View at Google Scholar
  32. H. Meng, Z. Wang, Y. Hoi et al., “Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation,” Stroke, vol. 38, no. 6, pp. 1924–1931, 2007. View at Publisher · View at Google Scholar
  33. H. Ujiie, H. Tachibana, O. Hiramatsu et al., “Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms,” Neurosurgery, vol. 45, no. 1, pp. 119–130, 1999. View at Publisher · View at Google Scholar
  34. L. Goubergrits, U. Kertzscher, B. Schoneberg, E. Wellnhofer, C. Petz, and H.-C. Hege, “CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography,” International Journal of Cardiovascular Imaging, vol. 24, no. 4, pp. 411–421, 2008. View at Publisher · View at Google Scholar
  35. F. P. Glor, B. Ariff, A. D. Hughes et al., “The integration of medical imaging and computational fluid dynamics for measuring wall shear stress in carotid arteries,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1415–1418, 2004.
  36. G. N. Foutrakis, H. Yonas, and R. J. Sclabassi, “Saccular aneurysm formation in curved and bifurcating arteries,” American Journal of Neuroradiology, vol. 20, no. 7, pp. 1309–1317, 1999. View at Google Scholar
  37. J. R. Cebral, S. Hendrickson, and C. M. Putman, “Hemodynamics in a lethal basilar artery aneurysm just before its rupture,” American Journal of Neuroradiology, vol. 30, no. 1, pp. 95–98, 2009. View at Publisher · View at Google Scholar
  38. S. Inci and R. F. Spetzler, “Intracranial aneurysms and arterial hypertension: a review and hypothesis,” Surgical Neurology, vol. 53, no. 6, pp. 530–542, 2000. View at Publisher · View at Google Scholar
  39. H. J. Steiger, R. Aaslid, S. Keller, and H.-J. Reulen, “Growth of aneurysms can be understood as passive yield to blood pressure. An experimental study,” Acta Neurochirurgica, vol. 100, no. 1-2, pp. 74–78, 1989. View at Google Scholar
  40. J. D. J. Anderson, Computational Fluid Dynamics: The Basics with Application, McGraw-Hill, New York, NY, USA, 1st edition, 1995.
  41. M. D. Ford, G. R. Stuhne, H. N. Nikolov et al., “Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics,” IEEE Transactions on Medical Imaging, vol. 24, no. 12, pp. 1586–1592, 2005. View at Publisher · View at Google Scholar
  42. C. Karmonik, R. Klucznik, and C. Benndorf, “Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics—preliminary experience,” RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol. 180, no. 3, pp. 209–215, 2008. View at Publisher · View at Google Scholar
  43. A. G. Radaelli, L. Augsburger, J. R. Cebral et al., “Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007,” Journal of Biomechanics, vol. 41, no. 10, pp. 2069–2081, 2008. View at Publisher · View at Google Scholar