Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2011 (2011), Article ID 519868, 12 pages
http://dx.doi.org/10.1155/2011/519868
Research Article

Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects

Laboratorium voor Neuro- en Psychofysiologie, K.U.Leuven, Campus Gasthuisberg, O&N 2, Bus 1021, Herestraat 49, B-3000 Leuven, Belgium

Received 14 March 2011; Revised 26 May 2011; Accepted 4 July 2011

Academic Editor: Laura Astolfi

Copyright © 2011 Nikolay V. Manyakov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sajda, K. R. Müller, and K. V. Shenoy, “Brain-computer interfaces,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 16–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Luck, An Introduction to the Event-Related Potential Technique, MIT Press, Cambridge, Mass, USA, 2005.
  3. L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6, pp. 510–523, 1988. View at Google Scholar · View at Scopus
  4. F. Nijboer, E. W. Sellers, J. Mellinger et al., “A P300-based brain-computer interface for people with amyotrophic lateral sclerosis,” Clinical Neurophysiology, vol. 119, no. 8, pp. 1909–1916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. W. Sellers and E. Donchin, “A P300-based brain-computer interface: initial tests by ALS patients,” Clinical Neurophysiology, vol. 117, no. 3, pp. 538–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Piccione, F. Giorgi, P. Tonin et al., “P300-based brain computer interface: reliability and performance in healthy and paralysed participants,” Clinical Neurophysiology, vol. 117, no. 3, pp. 531–537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Hoffmann, J. M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient P300-based brain-computer interface for disabled subjects,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 115–125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Silvoni, C. Volpato, M. Cavinato et al., “P300-based brain-computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis,” Frontiers in Neuroscience, vol. 3, no. 60, pp. 1–12, 2009. View at Google Scholar
  9. E. W. Sellers, T. M. Vaughan, and J. R. Wolpaw, “A brain-computer interface for long-term independent home use,” Amyotrophic Lateral Sclerosis, vol. 11, no. 5, pp. 449–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Krusienski, E. W. Sellers, F. Cabestaing et al., “A comparison of classification techniques for the P300 Speller,” Journal of Neural Engineering, vol. 3, no. 4, pp. 299–305, 2006. View at Google Scholar · View at Scopus
  11. H. Mirghasemi, R. Fazel-Rezai, and M. B. Shamsollahi, “Analysis of P300 classifiers in brain computer interface speller,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 6205–6208, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-computer interfaces,” Journal of Neural Engineering, vol. 4, no. 2, pp. R1–R13, 2007. View at Google Scholar · View at Scopus
  13. N. Chumerin, N. V. Manyakov, A. Combaz et al., “P300 detection based on feature extraction in on-line brain-computer interface,” Lecture Notes in Computer Science, vol. 5803, pp. 339–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “Low-power low-noise 8-channel EEG front-end ASIC for ambulatory acquisition systems,” in Proceedings of the 32nd European Solid-State Circuits Conference (ESSCIRC '06), pp. 247–250, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Panicker, S. Puthusserypady, and Y. Sun, “Adaptation in P300 braincomputer interfaces: a two-classifier cotraining approach,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2927–2935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. E. Tipping, “Bayesian inference: an introduction to principles and practice in machine learning,” in Advanced Lectures on Machine Learning, O. Bousquet, U. von Luxburg, and G. Rätsch, Eds., pp. 41–62, Springer, New York, NY, USA, 2004. View at Google Scholar
  17. M. Thulasidas, C. Guan, and J. Wu, “Robust classification of EEG signal for brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 1, pp. 24–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  19. J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vanderwalle, Least Square Support Vector Machines, World Scientific, Singapore, 2002.
  20. T. Joachims, “Making large-scale SVM learning practical,” in Advance in Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds., pp. 169–184, MIT Press, Cambridge, Mass, USA, 1999. View at Google Scholar
  21. J. M. Leiva-Murillo and A. Artés-Rodríguez, “Maximization of mutual information for supervised linear feature extraction,” IEEE Transactions on Neural Networks, vol. 18, no. 5, pp. 1433–1441, 2007. View at Publisher · View at Google Scholar
  22. A. Hyvärinen, “New approximations of differential entropy for independent component analysis and projection pursuit,” in Proceedings of the Conference on Advances in Neural Information Processing Systems, pp. 273–279, MIT Press, Cambridge, Mass, USA, 1998.
  23. G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303–314, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Bostanov and B. Kotchoubey, “The t-CWT: a new ERP detection and quantification method based on the continuous wavelet transform and Student's t-statistics,” Clinical Neurophysiology, vol. 117, no. 12, pp. 2627–2644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Gysels and P. Celka, “Phase synchronization for the recognition of mental tasks in a brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 4, pp. 406–415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. N. V. Manyakov, R. Vogels, and M. M. Van Hulle, “Decoding stimulus-reward pairing from local field potentials recorded from monkey visual cortex,” IEEE Transactions on Neural Networks, vol. 21, no. 12, pp. 1892–1902, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw, “Toward enhanced P300 speller performance,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 15–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Sellers, D. Krusienski, D. McFarland, and J. Wolpaw, “Non-invasive brain-computer interface research at the Wadsworth Center,” in Toward Brain-Computer Interfacing, G. Dornhege, J. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, Eds., pp. 31–42, MIT Press, Cambridge, Mass, USA, 2007. View at Google Scholar
  29. S. L. Shishkin, I. P. Ganin, I. A. Basyul, A. Y. Zhigalov, and A. Ya. Kaplan, “N1 wave in the P300 BCI is not sensitive to the physical characteristics of stimuli,” Journal of Integrative Neuroscience, vol. 8, no. 4, pp. 471–485, 2009. View at Publisher · View at Google Scholar
  30. M. S. Treder and B. Blankertz, “(C)overt attention and visual speller design in an ERP-based brain-computer interface,” Behavioral and Brain Functions, vol. 6, article 28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Townsend, B. K. LaPallo, C. B. Boulay et al., “A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns,” Clinical Neurophysiology, vol. 121, no. 7, pp. 1109–1120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Dal Seno, M. Matteucci, and L. Mainardi, “Online detection of P300 and error potentials in a BCI speller,” Computational Intelligence and Neuroscience, vol. 2010, Article ID 307254, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Combaz, N. Chumerin, N. V. Manyakov, A. Robben, J. A. K. Suykens, and M. M. Van Hulle, “Error-related potential recorded by EEG in the context of a P300 mind speller brain-computer interface,” in Proceedings of the 20th IEEE International Workshop on Machine Learning for Signal Processing (MLSP '10), pp. 65–70, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Neshige, N. Murayama, W. Izumi, T. Igasaki, and K. Takano, “Non-verbal and verbal P300 of auditory and visual stimuli in dementia, dysarthria and aphasia,” Japanese Journal of Rehabilitation Medicine, vol. 35, pp. 164–169, 1998. View at Google Scholar