Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2012, Article ID 541890, 8 pages
http://dx.doi.org/10.1155/2012/541890
Research Article

Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

1Software College, Northeastern University, Shenyang 110819, China
2Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang 110819, China
3Department of Radiology, Chinese PLA General Hospital, Shenyang 110015, China

Received 7 April 2012; Revised 1 August 2012; Accepted 17 August 2012

Academic Editor: Yen-Wei Chen

Copyright © 2012 Huiyan Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. H. Oh, H. S. Lim, and S. Y. Pang, “Medical image processing: from lossless to lossy compression,” in Proceedings of the IEEE Region 10 Conference (TENCON '05), pp. 1–6, November 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952. View at Publisher · View at Google Scholar
  3. T. A. Welch, “A technique for high performance data compression,” Computer, vol. 17, no. 6, pp. 8–19, 1984. View at Google Scholar · View at Scopus
  4. G. G. Langdon and J. Rissanen, “Compression of black-white images with arithmetic coding,” IEEE Transactions on Communications Systems, vol. 29, no. 6, pp. 858–867, 1981. View at Google Scholar · View at Scopus
  5. Y. W. Nijim, S. D. Stearns, and W. B. Mikhael, “Differentiation applied to lossless compression of medical images,” IEEE Transactions on Medical Imaging, vol. 15, no. 4, pp. 555–559, 1996. View at Google Scholar · View at Scopus
  6. X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE Transactions on Communications, vol. 45, no. 4, pp. 437–444, 1997. View at Google Scholar · View at Scopus
  7. D. Chikouche, R. Benzid, and M. Bentoumi, “Application of the DCT and arithmetic coding to medical image compression,” in Proceedings of the 3rd International Conference on Information and Communication Technologies: from Theory to Applications (ICTTA '08), pp. 1–5, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. P. Wong, “Fractal image coding for emission tomographic image compression,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, vol. 3, pp. 1376–1379, November 2001. View at Scopus
  9. G. Tu, D. Liu, and C. Zhang, “A new compression algorithm for medical images using wavelet transform,” in Proceedings of the IEEE Networking, Sensing and Control (ICNSC '05), pp. 84–89, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. B. H. Tay, “Integer wavelet transform for medical image compression,” in Proceedings of the 7th Australian and New Zealand Intelligent Information Systems Conference (ANZIIS '01), pp. 357–360, November 2001.
  11. A. Al-Fayadh, A. J. Hussain, P. Lisboa, D. Al-Jumeily, and M. Al-Jumaily, “A hybrid image compression method and its application to medical images,” in Proceedings of the 2nd International Conference on Developments in eSystems Engineering (DeSE '09), pp. 107–112, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. B. Kim, S. Kim, and G. H. Kim, “Vector quantizer of medical image using wavelet transform and enhanced SOM algorithm,” Neural Computing and Applications, vol. 15, no. 3-4, pp. 245–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. M. H. Tayarani, A. P. Bennett, M. Beheshti et al., “A novel initialization for quantum evolutionary algorithms based on spatial correlation in images for fractal image compression,” in Proceedings of the Soft Computing in Industrial Applications, pp. 317–325, 2011.
  14. D. Zümray, “Compression of medical images by using artificial neural networks,” in Proceedings of the Intelligent Computing, vol. 4113 of Lecture Notes in Computer Science, pp. 337–344, 2006.
  15. J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445–3462, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Said and W. A. Pearlman, “Image compression using the spatial-orientation tree,” in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 279–282, May 1993. View at Scopus
  17. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications Systems, vol. 28, no. 1, pp. 84–95, 1980. View at Google Scholar · View at Scopus
  18. J. Vaisey and A. Gersho, “Image compression with variable block size segmentation,” IEEE Transactions on Signal Processing, vol. 40, no. 8, pp. 2040–2060, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Yamanaka, T. Yamaguchi, K. Sasazaki, J. Maeda, and Y. Suzuki, “Image compression using wavelet transform and vector quantization with variable block size,” in Proceedings of the IEEE Conference on Soft Computing on Industrial Applications (SMCia '08), pp. 359–364, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Sasazaki, S. Saga, J. Maeda, and Y. Suzuki, “Vector quantization of images with variable block size,” Applied Soft Computing Journal, vol. 8, no. 1, pp. 634–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Google Scholar · View at Scopus
  22. N. Sarkar and B. B. Chauduri, “Efficient differential box-counting approach to compute fractal dimension of image,” IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 1, pp. 115–120, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple resolution texture analysis and classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 4, pp. 518–523, 1984. View at Google Scholar · View at Scopus
  24. B. B. Mandelbrot, The Fractal Geometry of Nature, Library of Congress, 1983.
  25. R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Keissarian, “A new quad-tree segmented image compression scheme using histogram analysis and pattern matching,” in Proceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE '10), pp. 694–698, February 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. MacKay, “An example inference task: clustering,” in Information Theory, Inference and Learning Algorithms, pp. 284–292, Cambridge University Press, 2003. View at Google Scholar
  29. G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that find better clusterings,” in Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM '02), pp. 600–607, November 2002. View at Scopus