Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2012 (2012), Article ID 704673, 9 pages
http://dx.doi.org/10.1155/2012/704673
Research Article

Detection of Fractal Behavior in Temporal Series of Synaptic Quantal Release Events: A Feasibility Study

1Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2Neurobiology of Learning Unit, Scientific Institute San Raffaele and Università Vita e Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy

Received 18 January 2012; Revised 1 June 2012; Accepted 6 June 2012

Academic Editor: Marc Van Hulle

Copyright © 2012 Jacopo Lamanna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Fatt and B. Katz, “Spontaneous subthreshold activity at motor nerve endings,” The Journal of Physiology, vol. 117, no. 1, pp. 109–128, 1952. View at Google Scholar · View at Scopus
  2. S. B. Lowen, S. S. Cash, M. M. Poo, and M. C. Teich, “Quantal neurotransmitter secretion rate exhibits fractal behavior,” Journal of Neuroscience, vol. 17, no. 15, pp. 5666–5677, 1997. View at Google Scholar · View at Scopus
  3. A. Abenavoli, L. Forti, and A. Malgaroli, “Mechanisms of spontaneous miniature activity at CA3-CA1 synapses: evidence for a divergence from a random poisson process,” Biological Bulletin, vol. 199, no. 2, pp. 184–186, 2000. View at Google Scholar · View at Scopus
  4. A. Abenavoli, L. Forti, M. Bossi, A. Bergamaschi, A. Villa, and A. Malgaroli, “Multimodal quantal release at individual hippocampal synapses: evidence for no lateral inhibition,” Journal of Neuroscience, vol. 22, no. 15, pp. 6336–6346, 2002. View at Google Scholar · View at Scopus
  5. J. Lamanna, F. Esposti, A. Malgaroli, and M. G. Signorini, “Fractal behavior of spontaneous neurotransmitter release: from single-synapse to whole-cell recordings,” Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, vol. 2011, pp. 3346–3349, 2011. View at Google Scholar
  6. L. Forti, M. Bossi, A. Bergamaschi, A. Villa, and A. Malgaroli, “Loose-patch recordings of single quanta at individual hippocampal synapses,” Nature, vol. 388, no. 6645, pp. 874–878, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. O. B. McManus, A. L. Blatz, and K. L. Magleby, “Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise,” Pflugers Archiv European Journal of Physiology, vol. 410, no. 4-5, pp. 530–553, 1987. View at Google Scholar · View at Scopus
  8. F. J. Sigworth and S. M. Sine, “Data transformations for improved display and fitting of single-channel dwell time histograms,” Biophysical Journal, vol. 52, no. 6, pp. 1047–1054, 1987. View at Google Scholar · View at Scopus
  9. S. B. Lowen and M. C. Teich, Fractal-Based Point Processes, John Wiley & Sons, 2005.
  10. S. Thurner, S. B. Lowen, M. C. Feurstein, C. Heneghan, H. G. Feichtinger, and M. C. Teich, “Analysis, synthesis, and estimation of fractal-rate stochastic point processes,” Fractals, vol. 5, no. 4, pp. 565–595, 1997. View at Google Scholar · View at Scopus
  11. C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Physical Review E, vol. 49, no. 2, pp. 1685–1689, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Little, P. McSharry, I. Moroz, and S. Roberts, “Nonlinear, biophysically-informed speech pathology detection,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '06), pp. II1080–II1083, May 2006. View at Scopus
  13. Heuser JEaSSR, “Ultrastructure of the cholinergic synapse,” in The Cholinergic Synapse, Heuser JEaSSR, Ed., pp. 478–480, 1979. View at Google Scholar
  14. A. Fejtova and E. D. Gundelfinger, “Molecular organization and assembly of the presynaptic active zone of neurotransmitter release,” Results and Problems in Cell Differentiation, vol. 43, pp. 49–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. N. P. Vyleta and S. M. Smith, “Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor,” Journal of Neuroscience, vol. 31, no. 12, pp. 4593–4606, 2011. View at Publisher · View at Google Scholar · View at Scopus