Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2012, Article ID 918030, 17 pages
http://dx.doi.org/10.1155/2012/918030
Research Article

Interspike Interval Based Filtering of Directional Selective Retinal Ganglion Cells Spike Trains

Computer Science Department VI, Technical University Munich, Boltzmannstraße 3, 85748 Garching, Germany

Received 30 March 2012; Accepted 10 June 2012

Academic Editor: Saeid Sanei

Copyright © 2012 Aurel Vasile Martiniuc and Alois Knoll. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Levick, “Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina,” The Journal of Physiology, vol. 188, no. 3, pp. 285–307, 1967. View at Google Scholar · View at Scopus
  2. R. W. Rodieck, “Informing the brain,” in The First Steps in Seeing, pp. 266–292, Sinauer Associates, Sunderland, Mass, USA, 1998. View at Google Scholar
  3. M. Carandini, J. C. Horton, and L. C. Sincich, “Thalamic filtering of retinal spike trains by postsynaptic summation,” Journal of Vision, vol. 7, no. 14, article 20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. M. Zeck and R. H. Masland, “Spike train signatures of retinal ganglion cell types,” European The Journal of Neuroscience, vol. 26, no. 2, pp. 367–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. B. Barlow and R. M. Hill, “Selective sensitivity to direction of movement in ganglion cells of the rabbit retina,” Science, vol. 139, no. 3553, pp. 412–414, 1963. View at Google Scholar · View at Scopus
  6. H. B. Barlow, R. M. Hill, and W. R. Levick, “Retinal ganglion cells responding selectively to direction and speed of,” The Journal of Physiology, vol. 173, pp. 377–407, 1964. View at Google Scholar · View at Scopus
  7. W. R. Levick, C. W. Oyster, and E. Takahashi, “Rabbit lateral geniculate nucleus: sharpener of directional information,” Science, vol. 165, no. 3894, pp. 712–714, 1969. View at Google Scholar · View at Scopus
  8. F. R. Amthor, C. W. Oyster, and E. S. Takahashi, “Morphology of on-off direction-selective ganglion cells in the rabbit retina,” Brain Research, vol. 298, no. 1, pp. 187–196, 1984. View at Publisher · View at Google Scholar · View at Scopus
  9. F. R. Amthor, E. S. Takahashi, and C. W. Oyster, “Morphologies of rabbit retinal ganglion cells with complex receptive fields,” Journal of Comparative Neurology, vol. 280, no. 1, pp. 97–121, 1989. View at Google Scholar · View at Scopus
  10. T. Euler, P. B. Detwiler, and W. Denk, “Directionally selective calcium signals in dendrites of starburst amacrine cells,” Nature, vol. 418, no. 6900, pp. 845–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. D. I. Vaney, W. R. Levick, and L. N. Thibos, “Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties,” Experimental Brain Research, vol. 44, no. 1, pp. 27–33, 1981. View at Google Scholar · View at Scopus
  12. D. I. Vaney, L. Peichi, H. Wassle, and R. B. Illing, “Almost all ganglion cells in the rabbit retina project to the superior colliculus,” Brain Research, vol. 212, no. 2, pp. 447–453, 1981. View at Publisher · View at Google Scholar · View at Scopus
  13. B. G. Cleland, W. R. Levick, R. Morstyn, and H. G. Wagner, “Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex,” The Journal of Physiology, vol. 255, no. 1, pp. 299–320, 1976. View at Google Scholar · View at Scopus
  14. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” The Journal of Physiology, vol. 160, pp. 106–154, 1962. View at Google Scholar · View at Scopus
  15. S. W. Kuffler , “Discharge patterns and functional organization of mammalian retina,” Journal of Neurophysiology, vol. 16, no. 1, pp. 37–68, 1953. View at Google Scholar · View at Scopus
  16. R. C. Reid and W. M. Usrey, “Functional connectivity in the pathway from retina to visual cortex,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, Eds., pp. 673–679, MIT Press, Cambridge, Mass, USA, 2004. View at Google Scholar
  17. B. G. Cleland, M. W. Dubin, and W. R. Levick, “Simultaneous recording of input and output of lateral geniculate neurones,” Nature, vol. 231, no. 23, pp. 191–192, 1971. View at Google Scholar · View at Scopus
  18. L. C. Sincich, D. L. Adams, J. R. Economides, and J. C. Horton, “Transmission of spike trains at the retinogeniculate synapse,” The Journal of Neuroscience, vol. 27, no. 10, pp. 2683–2692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. M. Usrey, J. B. Reppas, and R. C. Reid, “Specificity and strength of retinogeniculate connections,” Journal of Neurophysiology, vol. 82, no. 6, pp. 3527–3540, 1999. View at Google Scholar · View at Scopus
  20. A. Casti, F. Hayot, Y. Xiao, and E. Kaplan, “A simple model of retina-LGN transmission,” Journal of Computational Neuroscience, vol. 24, no. 2, pp. 235–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. L. Rathbun, H. J. Alitto, T. G. Weyand, and W. M. Usrey, “Interspike interval analysis of retinal ganglion cell receptive fields,” Journal of Neurophysiology, vol. 98, no. 2, pp. 911–919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Rathbun, D. K. Warland, and W. M. Usrey, “Spike timing and information transmission at retinogeniculate synapses,” The Journal of Neuroscience, vol. 30, no. 41, pp. 13558–13566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Sincich, J. C. Horton, and T. O. Sharpee, “Preserving information in neural transmission,” The Journal of Neuroscience, vol. 29, no. 19, pp. 6207–6216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. M. Usrey, J. M. Alonso, and R. C. Reid, “Synaptic interactions between thalamic inputs to simple cells in cat visual cortex,” The Journal of Neuroscience, vol. 20, no. 14, pp. 5461–5467, 2000. View at Google Scholar · View at Scopus
  25. W. M. Usrey, J. B. Reppas, and R. C. Reid, “Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus,” Nature, vol. 395, no. 6700, pp. 384–387, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. T. G. Weyand, “Retinogeniculate transmission in wakefulness,” Journal of Neurophysiology, vol. 98, no. 2, pp. 769–785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. W. Levine and B. G. Cleland, “An analysis of the effect of retinal ganglion cell impulses upon the firing probability of neurons in the dorsal lateral geniculate nucleus of the cat,” Brain Research, vol. 902, no. 2, pp. 244–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. N. Mastronarde, “Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties,” Journal of Neurophysiology, vol. 57, no. 2, pp. 381–413, 1987. View at Google Scholar · View at Scopus
  29. R. Uglesich, A. Casti, F. Hayot, and E. Kaplan, “Stimulus size dependence of information transfer from retina to thalamus,” Frontiers in Systems Neuroscience, vol. 3, article 10, 2009. View at Publisher · View at Google Scholar
  30. W. R. Taylor and D. I. Vaney, “Diverse synaptic mechanisms generate direction selectivity in the rabbit retina,” The Journal of Neuroscience, vol. 22, no. 17, pp. 7712–7720, 2002. View at Google Scholar · View at Scopus
  31. A. V. Martiniuc and A. Knoll, “Sharpening of directional selectivity from neural output of rabbit retina,” Journal of Computational Neuroscience, vol. 30, no. 2, pp. 409–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. E. Soodak and J. I. Simpson, “The accessory optic system of rabbit. I. Basic visual response properties,” Journal of Neurophysiology, vol. 60, no. 6, pp. 2037–2054, 1988. View at Google Scholar · View at Scopus
  33. J. M. Ackert, S. H. Wu, J. C. Lee et al., “Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina,” The Journal of Neuroscience, vol. 26, no. 16, pp. 4206–4215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Yang and R. H. Masland, “Receptive fields and dendritic structure of directionally selective retinal ganglion cells,” The Journal of Neuroscience, vol. 14, no. 9, pp. 5267–5280, 1994. View at Google Scholar · View at Scopus
  35. A. Koizumi, T. C. Jakobs, and R. H. Masland, “Inward rectifying currents stabilize the membrane potential in dendrites of mouse amacrine cells: patch-clamp recordings and single-cell RT-PCR,” Molecular Vision, vol. 10, pp. 328–340, 2004. View at Google Scholar · View at Scopus
  36. R. C. Reid, J. D. Victor, and R. M. Shapley, “The use of m-sequences in the analysis of visual neurons: linear receptive field properties,” Visual Neuroscience, vol. 14, no. 6, pp. 1015–1027, 1997. View at Google Scholar · View at Scopus
  37. S. H. DeVries and D. A. Baylor, “Mosaic arrangement of ganglion cell receptive fields in rabbit retina,” Journal of Neurophysiology, vol. 78, no. 4, pp. 2048–2060, 1997. View at Google Scholar · View at Scopus
  38. L. Paninski, “Convergence properties of three spike-triggered analysis techniques,” Network, vol. 14, no. 3, pp. 437–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Godwin, J. W. Vaughan, and S. M. Sherman, “Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic,” Journal of Neurophysiology, vol. 76, no. 3, pp. 1800–1816, 1996. View at Google Scholar · View at Scopus
  40. W. Guido, S. M. Lu, J. W. Vaughan, D. W. Godwin, and S. Murray Sherman, “Receiver operating characteristics (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode,” Visual Neuroscience, vol. 12, no. 4, pp. 723–741, 1995. View at Google Scholar · View at Scopus
  41. H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of a time histogram,” Neural Computation, vol. 19, no. 6, pp. 1503–1527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek, “Entropy and information in neural spike trains,” Physical Review Letters, vol. 80, no. 1, pp. 197–200, 1998. View at Google Scholar · View at Scopus
  43. N. Brenner, S. P. Strong, R. Koberle, W. Bialek, and R. R. de Ruyter Van Steveninck, “Synergy in a neural code,” Neural Computation, vol. 12, no. 7, pp. 1531–1552, 2000. View at Google Scholar · View at Scopus
  44. B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Current Opinion in Neurobiology, vol. 14, no. 4, pp. 481–487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. D. H. Hubel and T. N. Wiesel, “Integrative action in the cat's lateral geniculate body,” The Journal of Physiology, vol. 155, pp. 385–398, 1961. View at Google Scholar · View at Scopus
  46. E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” The Journal of Physiology, vol. 391, pp. 267–288, 1987. View at Google Scholar · View at Scopus
  47. D. M. Blitz and W. G. Regehr, “Retinogeniculate synaptic properties controlling spike number and timing in relay neurons,” Journal of Neurophysiology, vol. 90, no. 4, pp. 2438–2450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Fairhall, C. A. Burlingame, R. Narasimhan, R. A. Harris, J. L. Puchalla, and M. J. Berry, “Selectivity for multiple stimulus features in retinal ganglion cells,” Journal of Neurophysiology, vol. 96, no. 5, pp. 2724–2738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Kara, P. Reinagel, and R. C. Reid, “Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons,” Neuron, vol. 27, no. 3, pp. 635–646, 2000. View at Google Scholar · View at Scopus
  50. M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5411–5416, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. H. A. Swadlow and A. G. Gusev, “The impact of 'bursting' thalamic impulses at a neocortical synapse,” Nature Neuroscience, vol. 4, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. H. A. Swadlow, A. G. Gusev, and T. Bezdudnaya, “Activation of a cortical column by a thalamocortical impulse,” The Journal of Neuroscience, vol. 22, no. 17, pp. 7766–7773, 2002. View at Google Scholar · View at Scopus
  53. M. Carandini and D. Ferster, “Membrane potential and firing rate in cat primary visual cortex,” The Journal of Neuroscience, vol. 20, no. 1, pp. 470–484, 2000. View at Google Scholar · View at Scopus
  54. B. Jagadeesh, H. S. Wheat, L. L. Kontsevich, C. W. Tyler, and D. Ferster, “Direction selectivity of synaptic potentials in simple cells of the cat visual cortex,” Journal of Neurophysiology, vol. 78, no. 5, pp. 2772–2789, 1997. View at Google Scholar · View at Scopus
  55. N. J. Priebe and D. Ferster, “Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex,” Neuron, vol. 45, no. 1, pp. 133–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Volgushev, J. Pernberg, and U. T. Eysel, “Comparison of the selectivity of postsynaptic potentials and spike responses in cat visual cortex,” European The Journal of Neuroscience, vol. 12, no. 1, pp. 257–263, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. C. W. Oyster, “The analysis of image motion by the rabbit retina,” The Journal of Physiology, vol. 199, no. 3, pp. 613–635, 1968. View at Google Scholar · View at Scopus