Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2013, Article ID 537218, 12 pages
http://dx.doi.org/10.1155/2013/537218
Research Article

Common Spatio-Time-Frequency Patterns for Motor Imagery-Based Brain Machine Interfaces

1Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
2RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0106, Japan

Received 7 May 2013; Revised 17 August 2013; Accepted 31 August 2013

Academic Editor: Daoqiang Zhang

Copyright © 2013 Hiroshi Higashi and Toshihisa Tanaka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Dornhege, J. R. Millan, T. Hinterberger, D. McFarland, and K.-R. Muller, Eds., Toward Brain-Computer Interfacing, The MIT Press, Cambridge, Mass, USA, 2007.
  2. S. Sanei and J. Chambers, EEG Signal Processing, Wiley-Interscience, New York, NY, USA, 2007.
  3. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiology, vol. 113, no. 6, pp. 767–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. McFarland and J. R. Wolpaw, “Brain-computer interface operation of robotic and prosthetic devices,” Computer, vol. 41, no. 10, pp. 52–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Zhang, Y. Kimura, H. Higashi, and T. Tanaka, “A simple platform of brain-controlled mobile robot and its implementation by SSVEP,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '12), pp. 1–7, 2012.
  6. D. J. McFarland and J. R. Wolpaw, “Brain-computer interfaces for communication and control,” Communications of the ACM, vol. 54, no. 5, pp. 60–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Wolpaw and D. J. McFarland, “Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17849–17854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Daly and J. R. Wolpaw, “Brain-computer interfaces in neurological rehabilitation,” The Lancet Neurology, vol. 7, no. 11, pp. 1032–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clinical Neurophysiology, vol. 110, no. 5, pp. 787–798, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial EEG during imagined hand movement,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441–446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Lemm, B. Blankertz, G. Curio, and K.-R. Müller, “Spatio-spectral filters for improving the classification of single trial EEG,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 9, pp. 1541–1548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-R. Müller, “Combined optimization of spatial and temporal filters for improving brain-computer interfacing,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 11, pp. 2274–2281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Tomioka, G. Dornhege, G. Nolte, B. Blankertz, K. Aihara, and K. R. M. Müller, “Spectrally weighted common spatial pattern algorithm for single trial eeg classification,” Tech. Rep. 40, Department of Mathematical Engineering, University of Tokyo, Tokyo, Japan, 2006. View at Google Scholar
  14. H. Higashi and T. Tanaka, “Classification by weighting for spatio-frequency components of EEG signal during motor imagery,” in Proceedings of the 36th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '11), pp. 585–588, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Higashi and T. Tanaka, “Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 4, pp. 1100–1110, 2013. View at Google Scholar
  16. N. Tomida, H. Higashi, and T. Tanaka, “A joint tensor diagonalization approach to active data selection for EEG classification,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '13), pp. 983–987, 2013.
  17. K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '08), pp. 2390–2397, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs,” Pattern Recognition, vol. 45, no. 6, pp. 2137–2144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Lu, H.-L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regularized common spatial pattern with aggregation for EEG classification in small-sample setting,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2936–2946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Lotte and C. Guan, “Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 355–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Der and I. J. Deary, “Age and sex differences in reaction time in adulthood: results from the United Kingdom health and lifestyle survey,” Psychology and Aging, vol. 21, no. 1, pp. 62–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Blankertz, K.-R. Müller, D. J. Krusienski et al., “The BCI competition III: validating alternative approaches to actual BCI problems,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 153–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller, “Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 993–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio, “The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects,” NeuroImage, vol. 37, no. 2, pp. 539–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model selection,” BMC Bioinformatics, vol. 7, no. 1, article 91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. D. R. Millán and J. Mouriño, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 159–161, 2003. View at Publisher · View at Google Scholar · View at Scopus