Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2016, Article ID 6391807, 10 pages
Research Article

Discovering Patterns in Brain Signals Using Decision Trees

Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil

Received 29 April 2016; Revised 26 July 2016; Accepted 2 August 2016

Academic Editor: Placido Rogerio Pinheiro

Copyright © 2016 Narusci S. Bastos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. de Sá, I. M. de Campos, and M. B. C. Silva, Atendimento Educacional Especializado: Deficiência Visual, MEC, SEESP, 2007 (Portuguese).
  2. V. Kastrup, “A Invention on fingertips: attention reversion in visually impaired people,” Psicologia em Revista, vol. 13, no. 1, pp. 69–90, 2007. View at Google Scholar
  3. C. Eyzaguirre, Physiology of the Nervous System. Year Book Medical, First Thus Edition, 1st edition, 1969.
  4. M. Gil, Cadernos da TV Escola—Deficiência Visual, MEC-Secretaria de Educação a Distância, Brasília, Brasil, 2000 (Portuguese).
  5. S. Machado, M. Cunha, B. Velasques et al., “Brain-computer interface: new prospects for rehabilitation,” Revista Neurociências, vol. 17, no. 4, pp. 329–335, 2009 (Portuguese). View at Google Scholar
  6. R. B. Pereira, A. Plastino, B. Zadrony, L. H. C. Merschmann, and A. A. Freitas, “Lazy attribute selection: choosing attributes at classification time,” Intelligent Data Analysis, vol. 15, no. 5, pp. 715–732, 2011. View at Publisher · View at Google Scholar
  7. M. R. Lourenço, P. P. Garcez, R. Lent, and D. Uziel, “Temporal and spatial regulation of interneuron distribution in the developing cerebral cortex—an in vitro study,” Neuroscience, vol. 201, pp. 357–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Gazzaniga, T. F. Heatherton, and M. A. V. Veronese, Psychological Science: Mind, Brain and Behavior, edited by W. W. Norton, 2006.
  9. R. Lent and F. Tovar-Moll, “How can development and plasticity contribute to understanding evolution of the human brain?” Frontiers in Human Neuroscience, vol. 9, article 208, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. Secretária de Educação Especial, Subsídios para a Organização e Funcionamento de serviços de educação especial, Ministério da Educação e do Desporto, Secretária de Educação Especial, Brasília, Brazil, 1995 (Portugueses).
  11. S. D. Silveira Nunes and J. F. B. Lomonaco, “Desenvolvimento de conceitos em cegos congênitos: caminhos de aquisição do conhecimento,” Psicologia Escolar e Educacional, vol. 12, no. 1, pp. 119–138, 2008 (Portuguese). View at Google Scholar
  12. D. J. McFarland and J. R. Wolpaw, “Brain-computer interfaces for communication and control,” Communications of the ACM, vol. 54, no. 5, pp. 60–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kugler, I. N. Mukai, H. S. Lopes, and V. Pilla Junior, “Recognition of EEG patterns related to evoked potentials by intermittent photo-stimulation,” in Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, pp. 344–350, CSREA Press, Las Vegas, Nev, USA, 2001.
  14. I. Oliveira, L. Carrico, N. Guimaraes, T. Chambel, and C. Teixeira, Interfaces Computador-Cérebro: Extracção e Processamento de Características de Electroencefalogramas, Department of Informatics, University of Lisbon, 2008 (Portuguese).
  15. A. Vallabhaneni, T. Wang, and B. He, “Brain-computer interface,” in Neural Engineering, B. He, Ed., pp. 85–121, Kluwer Academic Publishers, New York, NY, USA, 2005. View at Google Scholar
  16. American Clinical Neurophysiology Society, “Guideline 5: guidelines for standard electrode position nomenclature,” American Journal of Electroneurodiagnostic Technology, vol. 46, no. 3, pp. 222–225, 2006. View at Google Scholar
  17. A. B. Alencar, K. Börner, F. V. Paulovich, and M. C. F. de Oliveira, “Time-aware visualization of document collections,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC '12), pp. 997–1004, ACM, Trento, Italy, March 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowledge discovery in databases,” AI Magazine, vol. 17, no. 3, pp. 37–53, 1996. View at Google Scholar · View at Scopus
  19. U. Fayyad, Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, Calif, USA, 1st edition, 1996.
  20. A. Ishfaque, A. J. Awan, N. Rashid, and J. Iqbal, “Evaluation of ANN, LDA and decision trees for EEG based brain computer interface,” in Proceedings of the IEEE 9th International Conference on Emerging Technologies (ICET '13), pp. 1–6, IEEE, Islamabad, Pakistan, December 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Wang, C. M. Wong, F. Wan, P. U. Mak, P. I. Mak, and M. I. Vai, “Comparison of different classification methods for EEG-based brain computer interfaces: a case study,” in Proceedings of the IEEE International Conference on Information and Automation (ICIA '09), pp. 1416–1421, Zhuhai, China, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Ferreira, Data mining em banco de dados de eletrocardiograma [Tese de Douturado Instituto Dante Pazzanese de Cardiologia], Universidade de São Paulo, 2014 (Portuguese).
  23. P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, vol. 1, Pearson Addison Wesley, Boston, Mass, USA, 2006.