Table of Contents Author Guidelines Submit a Manuscript
Computational Intelligence and Neuroscience
Volume 2018 (2018), Article ID 1018789, 7 pages
https://doi.org/10.1155/2018/1018789
Research Article

A Multiple Kernel Learning Model Based on -Norm

1School of Information, Renmin University of China, Beijing 100872, China
2School of Computer Science and Technology, Huaiyin Normal University, Huai’an, Jiangsu 223300, China

Correspondence should be addressed to Xun Liang; moc.361@gnail__nux

Received 29 July 2017; Revised 7 December 2017; Accepted 24 December 2017; Published 23 January 2018

Academic Editor: Toshihisa Tanaka

Copyright © 2018 Jinshan Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Chang and C. Lin, “LIBSVM: a Library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kloft, U. Rückert, and P. L. Bartlett, “A unifying view of multiple kernel learning,” in Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD '10), pp. 66–81, Barcelona, Spain, September 2010.
  3. C. A. Micchelli and M. Pontil, “Learning the kernel function via regularization,” Journal of Machine Learning Research (JMLR), vol. 6, pp. 1099–1125, 2005. View at Google Scholar · View at MathSciNet
  4. Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu, “Simple and efficient multiple kernel learning by group lasso,” in Proceedings of the 27th International Conference on International Conference on Machine Learning, pp. 1175–1182, Haifa, Israel, June 2010.
  5. A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet, “Simple MKL,” Journal of Machine Learning Research, vol. 9, pp. 2491–2521, 2008. View at Google Scholar · View at MathSciNet · View at Scopus
  6. Y. Han and J. Wang, “A bi-sparse relational learning algorithm based on multiple kernel learning,” Jisuanji Yanjiu yu Fazhan/Computer Research and Development, vol. 47, no. 8, pp. 1400–1406, 2010. View at Google Scholar · View at Scopus
  7. M. Hu, Y. Chen, and J. T.-Y. Kwok, “Building sparse multiple-kernel SVM classifiers,” IEEE Transactions on Neural Networks and Learning Systems, vol. 20, no. 5, pp. 827–839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu, “Efficient sparse generalized multiple kernel learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 22, no. 3, pp. 433–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Xu, I. W. Tsang, and D. Xu, “Soft margin multiple kernel learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 5, pp. 749–761, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien, “-norm multiple kernel learning,” Journal of Machine Learning Research, vol. 12, pp. 953–997, 2011. View at Google Scholar · View at MathSciNet
  11. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT '92), pp. 144–152, ACM Press, 1992. View at Publisher · View at Google Scholar
  12. S. Sheen, “On the convergence of the coordinate decreasing method for convex differentiable minimizations,” Journal of Optimization Theory and Applications, vol. 72, no. 1, 1992. View at Google Scholar