Table of Contents
Chinese Journal of Biology
Volume 2014 (2014), Article ID 217434, 7 pages
http://dx.doi.org/10.1155/2014/217434
Research Article

Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation

1International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamil Nadu 629 502, India
2Xpression Biotek, Akash Tower, Pammam, Marthandam, Kanyakumari District, Tamil Nadu 629 165, India

Received 25 August 2013; Accepted 9 October 2013; Published 1 January 2014

Academic Editors: Z. Tan and R. Tofalo

Copyright © 2014 Ponnuswamy Vijayaraghavan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Turk, “Targeting proteases: successes, failures and future prospects,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 785–799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Moses and R. E. Cape, Biotechnology, the Science and Business, Harwood Academic publishers, 1991.
  3. H.-S. Joo, C. G. Kumar, G.-C. Park, S. R. Paik, and C.-S. Chang, “Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties,” Journal of Applied Microbiology, vol. 95, no. 2, pp. 267–272, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Rajkumar, J. K. Ranishree, and R. Ramasamy, “Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation,” Journal of Microbiology and Biotechnology, vol. 21, no. 6, pp. 627–636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Prakasham, C. S. Rao, and P. N. Sarma, “Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation,” Bioresource Technology, vol. 97, no. 13, pp. 1449–1454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for bioprocesses,” Biochemical Engineering Journal, vol. 6, no. 2, pp. 153–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. K. Mukherjee, H. Adhikari, and S. K. Rai, “Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation,” Biochemical Engineering Journal, vol. 39, no. 2, pp. 353–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. V. Misra, R. N. Roy, and H. Hiraoka, On Farm Composting Method, FAO, Rome, Italy.
  9. P. Vijayaraghavan and S. G. P. Vincent, “Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications,” Biochemical Engineering Journal, vol. 69, pp. 57–60, 2012. View at Google Scholar
  10. P. Vijayaraghavan, A. Vijayan, A. Arun, J. K. Jenisha, and S. G. P. Vincent, “Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV,” SpringerPlus, vol. 1, article 76, 2012. View at Publisher · View at Google Scholar
  11. A. Gupta, I. Roy, R. K. Patel, S. P. Singh, S. K. Khare, and M. N. Gupta, “One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp,” Journal of Chromatography A, vol. 1075, no. 1-2, pp. 103–108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ogino, K. Yasui, T. Shiotani, T. Ishihara, and H. Ishikawa, “Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4258–4262, 1995. View at Google Scholar · View at Scopus
  13. R. Rahman, L. P. Geok, M. Basri, and A. B. Salleh, “An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K: nutritional factors affecting protease production,” Enzyme and Microbial Technology, vol. 36, no. 5-6, pp. 749–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Kumura, K. Mikawa, and Z. Saito, “Purification and some properties of proteinase from Pseudomonas fluorescens,” Journal of Dairy Research, vol. 60, no. 2, pp. 229–237, 1993. View at Google Scholar · View at Scopus
  15. Y. Triki-Ellouz, B. Ghorbel, N. Souissi, S. Kammoun, and M. Nasri, “Biosynthesis of protease by Pseudomonas aeruginosa MN7 grown on fish substrate,” World Journal of Microbiology and Biotechnology, vol. 19, no. 1, pp. 41–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kalaiarasi and P. U. Sunitha, “Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil,” African Journal of Biotechnology, vol. 8, no. 24, pp. 7035–7041, 2009. View at Google Scholar · View at Scopus
  17. R. Gupta, Q. K. Beg, S. Khan, and B. Chauhan, “An overview on fermentation, downstream processing and properties of microbial alkaline proteases,” Applied Microbiology and Biotechnology, vol. 60, no. 4, pp. 381–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Jones and M. D. Collins, “Irregular, nonsporeforming Gram-positive rods,” in Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath, Ed., vol. 2, pp. 1261–1434, Williams and Wilkins, Baltimore, Md, USA, 1984. View at Google Scholar
  19. W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991. View at Google Scholar · View at Scopus
  20. D. C. Kim, N. S. Oh, and M. J. In, “Effect of carbon and nitrogen sources on cell growth and halotolerant alkaline protease production in Halomonas marisflava isolated from salt-fermented food,” Food Science and Biotechnology, vol. 13, pp. 837–840, 2004. View at Google Scholar
  21. A. G. Kumar, S. Swarnalatha, B. Sairam, and G. Sekaran, “Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries,” Bioresource Technology, vol. 99, no. 6, pp. 1939–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S.-L. Wang, C.-H. Yang, T.-W. Liang, and Y.-H. Yen, “Optimization of conditions for protease production by Chryseobacterium taeanense TKU001,” Bioresource Technology, vol. 99, no. 9, pp. 3700–3707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Manivasagan, J. Venkatesan, K. Sivakumar, and S.-K. Kim, “Production, characterization and antioxidant potential of protease from Streptomyces sp. MAB18 using poultry wastes,” BioMed Research International, vol. 2013, Article ID 496586, 12 pages, 2013. View at Publisher · View at Google Scholar
  24. M. S. Haque and M. N. Haque, “Studies on the effect of urine on biogas production,” Bangladesh Journal of Scientific and Industrial Research, vol. 41, no. 1-2, pp. 23–32, 2006. View at Google Scholar
  25. U. Patil and A. Chaudhari, “Optimal production of alkaline protease from solvent-tolerant alkalophilic Pseudomonas aeruginosa MTCC 7926,” Indian Journal of Biotechnology, vol. 10, no. 3, pp. 329–339, 2011. View at Google Scholar · View at Scopus
  26. N. D. Mahadik, U. S. Puntambekar, K. B. Bastawde, J. M. Khire, and D. V. Gokhale, “Production of acidic lipase by Aspergillus niger in solid state fermentation,” Process Biochemistry, vol. 38, no. 5, pp. 715–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Ellaiah, B. Srinivasulu, and K. Adinarayana, “A review on microbial alkaline proteases,” Journal of Scientific and Industrial Research, vol. 61, no. 9, pp. 690–704, 2002. View at Google Scholar · View at Scopus
  28. X.-Y. Tang, B. Wu, H.-J. Ying, and B.-F. He, “Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121,” Applied Biochemistry and Biotechnology, vol. 160, no. 4, pp. 1017–1031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Iyappan, K. Ramasamy, and S. Barathi, “Statistical media optimization and comparative proteome analysis for protease production from isolated Pseudomonas aeruginosa,” Journal of Pharmacy Research, vol. 5, no. 3, pp. 1451–1456, 2012. View at Google Scholar
  30. M. A. Hassan, B. M. Haroun, A. A. Amara, and E. A. Serour, “Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem,” BioMed Research International, vol. 2013, Article ID 175012, 14 pages, 2013. View at Publisher · View at Google Scholar
  31. M. F. Najafi, D. Deobagkar, and D. Deobagkar, “Potential application of protease isolated from Pseudomonas aeruginosa PD100,” Electronic Journal of Biotechnology, vol. 8, no. 2, pp. 197–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Kumar, S. Savitri, N. Thakur, R. Verma, and T. C. Bhalla, “Microbial proteases and application as laundry detergent additive,” Research Journal of Microbiology, vol. 3, no. 12, pp. 661–672, 2008. View at Publisher · View at Google Scholar · View at Scopus