Table of Contents
Chinese Journal of Biology
Volume 2014, Article ID 396708, 8 pages
http://dx.doi.org/10.1155/2014/396708
Review Article

Structure-Function Elucidation of Antioxidative and Prooxidative Activities of the Polyphenolic Compound Curcumin

1Centre for Nanosciences, Central University of Gujarat, Gandhinagar 382030, India
2Department of Biology, Indian Institute of Science Education and Research, Mohali, Chandigarh, Punjab, India
3Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Haryana, India

Received 8 December 2013; Accepted 16 January 2014; Published 9 March 2014

Academic Editors: A. K. Maiti and B. Niu

Copyright © 2014 Parth Malik and Tapan K. Mukherjee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Ali, A. Abo-Shady, H. A. Sharaf Eldeen, H. A. Soror, W. G. Shousha et al., “Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds,” Chemistry Central Journal, vol. 7, no. 1, article 53, 2013. View at Google Scholar
  2. M. A. Soobrattee, V. S. Neergheen, A. Luximon-Ramma, O. I. Aruoma, and T. Bahorun, “Phenolics as potential antioxidant therapeutic agents: mechanism and actions,” Mutation Research, vol. 579, no. 1-2, pp. 200–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Rice-Evans, N. J. Miller, and G. Paganga, “Antioxidant properties of phenolic compounds,” Trends in Plant Science, vol. 2, no. 4, pp. 152–159, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Clark, The Acidity of Phenol, ChemGuide, 2007.
  5. M. Schaffer, P. M. Schaffer, J. Zidan, and G. B. Sela, “Curcuma as a functional food in the control of cancer and inflammation,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 6, pp. 588–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Shen, C. Han, X. Chen, X. Hou, and Z. Long, “Simultaneous determination of three Curcuminoids in Curcuma wenyujin Y.H.chen et C.Ling. by liquid chromatography-tandem mass spectrometry combined with pressurized liquid extraction,” Journal of Pharmaceutical and Biomedical Analysis, vol. 81-82, pp. 146–150, 2013. View at Google Scholar
  7. P. Anand, S. G. Thomas, A. B. Kunnumakkara et al., “Biological activities of curcumin and its analogues (congeners) made by man and Mother Nature,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1590–1611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Gupta, S. Patchva, and B. B. Aggarwal, “Therapeutic roles of curcumin: lessons learned from clinical trials,” The AAPS Journal, vol. 15, no. 1, pp. 195–218, 2012. View at Google Scholar
  9. S. C. Gupta, S. Patchva, W. Koh, and B. B. Aggarwal, “Discovery of curcumin, a component of golden spice, and its miraculous biological activities,” Clinical and Experimental Pharmacology and Physiology, vol. 39, no. 3, pp. 283–299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. Weber, L. A. Hunsaker, S. F. Abcouwer, L. M. Deck, and D. L. Vander Jagt, “Anti-oxidant activities of curcumin and related enones,” Bioorganic and Medicinal Chemistry, vol. 13, no. 11, pp. 3811–3820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Venkatesan and M. N. Rao, “Structure-activity relationships for the inhibition of lipid peroxidation and the scavenging of free radicals by synthetic symmetrical curcumin analogues,” Journal of Pharmacy and Pharmacology, vol. 52, no. 9, pp. 1123–1128, 2000. View at Google Scholar · View at Scopus
  12. S. V. Jovanovic, S. Steenken, C. W. Boone, and M. G. Simic, “H-atom transfer is a preferred antioxidant mechanism of curcumin,” Journal of the American Chemical Society, vol. 121, no. 41, pp. 9677–9681, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. O. P. Sharma, “Antioxidant activity of curcumin and related compounds,” Biochemical Pharmacology, vol. 25, no. 15, pp. 1811–1812, 1976. View at Publisher · View at Google Scholar · View at Scopus
  14. K. C. Das and C. K. Das, “Curcumin (diferuloylmethane), a singlet oxygen (O12) quencher,” Biochemical and Biophysical Research Communications, vol. 295, no. 1, pp. 62–66, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mishra, N. Kapoor, A. M. Ali et al., “Differential apoptotic and redox regulatory activities of curcumin and its derivatives,” Free Radical Biology and Medicine, vol. 38, no. 10, pp. 1353–1360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kunwar, A. Barik, S. K. Sandur, and I. K. Priyadarsini, “Differential antioxidant/pro-oxidant activity of dimethoxycurcumin, a synthetic analogue of curcumin,” Free Radical Research, vol. 45, no. 8, pp. 959–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Atsumi, S. Fujisawa, and K. Tonosaki, “Relationship between intracellular ROS production and membrane mobility in curcumin- and tetrahydrocurcumin-treated human gingival fibroblasts and human submandibular gland carcinoma cells,” Oral Diseases, vol. 11, no. 4, pp. 236–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Syng-Ai, A. L. Kumari, and A. Khar, “Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2,” Molecular Cancer Therapeutics, vol. 3, no. 9, pp. 1101–1108, 2004. View at Google Scholar · View at Scopus
  19. A. Banerjee, A. Kunwar, B. Mishra, and K. I. Priyadarsini, “Concentration dependent antioxidant/pro-oxidant activity of curcumin. Studies from AAPH induced hemolysis of RBCs,” Chemico-Biological Interactions, vol. 174, no. 2, pp. 134–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Yoshino, M. Haneda, M. Naruse et al., “Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death,” Toxicology in Vitro, vol. 18, no. 6, pp. 783–789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Motterlini, R. Foresti, R. Bassi, and C. J. Green, “Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress,” Free Radical Biology and Medicine, vol. 28, no. 8, pp. 1303–1312, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Kou, S. Y. Chiou, C. Y. Weng, L. Wang, C. T. Ho, and M. -J. Wu, “Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1,” Molecular Nutrition & Food Research, vol. 57, no. 9, pp. 1598–1610, 2013. View at Google Scholar
  23. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, “Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation,” Molecular Pharmacology, vol. 69, no. 1, pp. 195–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, “Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells,” Carcinogenesis, vol. 20, no. 3, pp. 445–451, 1999. View at Google Scholar · View at Scopus
  25. A. Goel, C. R. Boland, and D. P. Chauhan, “Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells,” Cancer Letters, vol. 172, no. 2, pp. 111–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Ruby, G. Kuttan, K. Dinesh Babu, K. N. Rajasekharan, and R. Kuttan, “Anti-tumour and antioxidant activity of natural curcuminoids,” Cancer Letters, vol. 94, no. 1, pp. 79–83, 1995. View at Google Scholar · View at Scopus
  27. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, “In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties,” Biochemical Pharmacology, vol. 55, no. 12, pp. 1955–1962, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-J. Wang, M.-H. Pan, A.-L. Cheng et al., “Stability of curcumin in buffer solutions and characterization of its degradation products,” Journal of Pharmaceutical and Biomedical Analysis, vol. 15, no. 12, pp. 1867–1876, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Payton, P. Sandusky, and W. L. Alworth, “NMR study of the solution structure of curcumin,” Journal of Natural Products, vol. 70, no. 2, pp. 143–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Somparn, C. Phisalaphong, S. Nakornchai, S. Unchern, and N. P. Morales, “Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives,” Biological and Pharmaceutical Bulletin, vol. 30, no. 1, pp. 74–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Jurenka, “Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research,” Alternative Medicine Review, vol. 14, no. 2, pp. 141–153, 2009. View at Google Scholar · View at Scopus
  32. S. Shishodia, G. Sethi, and B. B. Aggarwal, “Curcumin: getting back to the roots,” Annals of the New York Academy of Sciences, vol. 1056, pp. 206–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Chen, W. Da, D. Zhang, Q. Liu, and J. Kang, “Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells,” Pharmazie, vol. 60, no. 1, pp. 57–61, 2005. View at Google Scholar · View at Scopus
  34. H.-C. Huanga, C.-J. Lin, W.-J. Liu, R.-R. Jiang, and Z.-F. Jiang, “Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II),” Food and Chemical Toxicology, vol. 49, no. 7, pp. 1578–1583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. I. Ghoneim, “Effects of curcumin on ethanol-induced hepatocyte necrosis and apoptosis: implication of lipid peroxidation and cytochrome c,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 379, no. 1, pp. 47–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-L. Lin and J.-K. Lin, “Curcumin: a potential cancer chemopreventive agent through suppressing NF-κB signaling,” Journal of Cancer Molecules, vol. 4, no. 1, pp. 11–16, 2008. View at Google Scholar · View at Scopus
  37. E.-M. Strasser, B. Wessner, N. Manhart, and E. Roth, “The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells,” Biochemical Pharmacology, vol. 70, no. 4, pp. 552–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-H. Woo, Y.-H. Kim, Y.-J. Choi et al., “Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt,” Carcinogenesis, vol. 24, no. 7, pp. 1199–1208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Galati, O. Sabzevari, J. X. Wilson, and P. J. O'Brien, “Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics,” Toxicology, vol. 177, no. 1, pp. 91–104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Ahsan, N. Parveen, N. U. Khan, and S. M. Hadi, “Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin,” Chemico-Biological Interactions, vol. 121, no. 2, pp. 161–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Ravindran, G. V. Subbaraju, M. V. Ramani, B. Sung, and B. B. Aggarwal, “Bisdemethylcurcumin and structurally related hispolon analogues of curcumin exhibit enhanced prooxidant, anti-proliferative and anti-inflammatory activities in vitro,” Biochemical Pharmacology, vol. 79, no. 11, pp. 1658–1666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Fang, J. Lu, and A. Holmgren, “Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 25284–25290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Jurrmann, R. Brigelius-Flohé, and G.-F. Böl, “Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells,” Journal of Nutrition, vol. 135, no. 8, pp. 1859–1864, 2005. View at Google Scholar · View at Scopus
  44. S. K. Sandur, H. Ichikawa, M. K. Pandey et al., “Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane),” Free Radical Biology and Medicine, vol. 43, no. 4, pp. 568–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Ahsan and S. M. Hadi, “Strand scission in DNA induced by curcumin in the presence of Cu(II),” Cancer Letters, vol. 124, no. 1, pp. 23–30, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. M. H. Leung, T. Harada, and T. W. Kee, “Delivery of curcumin and medicinal effects of the copper(II)-curcumin complexes,” Current Pharmaceutical Design, vol. 19, no. 11, pp. 2070–2083, 2013. View at Google Scholar
  47. G. Viswanath, A. Jithan, and V. M. Reddy, “Development of new delivery strategies to increase bioavailability of curcumin,” International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 1, no. 4, pp. 335–340, 2009. View at Google Scholar
  48. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Zanotto-Filho, K. Coradini, E. Braganhol et al., “Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 83, pp. 156–167, 2013. View at Google Scholar
  50. N. Zhoua, X. Zanb, Z. Wang, Z. D et al., “Galactosylated chitosan- polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin,” Carbohydrate Polymers, vol. 94, no. 1, pp. 420–429, 2013. View at Google Scholar
  51. A. P. Ranjan, A. Mukerjee, L. Helson, and J. K. Vishwanatha, “Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy,” Journal of Nanobiotechnology, vol. 10, no. 38, 2012. View at Google Scholar
  52. M. M. Yallapu, M. Jaggi, and S. C. Chauhan, “Curcumin nanomedicine a road to cancer therapeutics,” Current Pharmaceutical Design, vol. 19, no. 11, pp. 1994–2010, 2013. View at Google Scholar
  53. H. Sasaki, Y. Sunagawa, K. Takahashi et al., “Innovative preparation of curcumin for improved oral bioavailability,” Biological and Pharmaceutical Bulletin, vol. 34, no. 5, pp. 660–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Leonarduzzi, B. Sottero, and G. Poli, “Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited,” Pharmacology and Therapeutics, vol. 128, no. 2, pp. 336–374, 2010. View at Publisher · View at Google Scholar · View at Scopus