Table of Contents
Chinese Journal of Biology
Volume 2014, Article ID 572754, 7 pages
http://dx.doi.org/10.1155/2014/572754
Review Article

Effects of Probiotics, Prebiotics, and Synbiotics on Hypercholesterolemia: A Review

Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul, Tamilnadu, India

Received 13 December 2013; Accepted 18 January 2014; Published 27 February 2014

Academic Editors: A. Castañeyra-Perdomo, N. Heng, and S.-L. Pan

Copyright © 2014 Marimuthu Anandharaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Cardiovascular Disease,” Fact sheet 317, WHO, Geneva, Switzerland, 2009, http://www.who.int/mediacentre/factsheets/fs317/en/print.html.
  2. J. E. Manson, H. Tosteson, P. M. Ridker et al., “Medical progress: the primary prevention of myocardial infarction,” New England Journal of Medicine, vol. 326, no. 21, pp. 1406–1416, 1992. View at Google Scholar · View at Scopus
  3. P. S. Yusuf, S. Hawken, S. Ôunpuu et al., “Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study,” The Lancet, vol. 364, no. 9438, pp. 937–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kumar, R. Nagpal, R. Kumar et al., “Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases,” Experimental Diabetes Research, vol. 2012, Article ID 902917, 14 pages, 2012. View at Publisher · View at Google Scholar
  5. WHO, “Diet, Nutrition and Prevention of Chronic Diseases,” Report of a Joint WHO/FAO Expert Consultation, Geneva, Switzerland, 2003.
  6. M. R. Gismondo, L. Drago, and A. Lombardi, “Review of probiotics available to modify gastrointestinal flora,” International Journal of Antimicrobial Agents, vol. 12, no. 4, pp. 287–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Guarner, G. Perdigon, G. Corthier, S. Salminen, B. Koletzko, and L. Morelli, “Should yoghurt cultures be considered probiotic?” British Journal of Nutrition, vol. 93, no. 6, pp. 783–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. İ. Çakır, Determination of some probiotic properties on Lactobacilli and Bifidobacteria [Ph.D. thesis], Ankara University, 2003.
  9. E. L. Chuayana Jr., C. V. Ponce, M. R. B. Rivera, and E. C. Cabrera, “Antimicrobial activity of probiotics from milk products,” The Philippine Journal of Microbiology and Infectious Diseases, vol. 32, no. 2, pp. 71–74, 2003. View at Google Scholar
  10. R. B. Parker, “Probiotics: the other half of the antibiotic story,” Animal Nutrition and Health, vol. 29, pp. 4–8, 1974. View at Google Scholar
  11. R. Fuller, “Probiotics in man and animals,” Journal of Applied Bacteriology, vol. 66, no. 5, pp. 365–378, 1989. View at Google Scholar · View at Scopus
  12. J. Schrezenmeir and M. De Vrese, “Probiotics, prebiotics, and synbiotics—approaching a definition,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 361–364, 2001. View at Google Scholar · View at Scopus
  13. S. Salminen, C. Bouley, M.-C. Boutron-Ruault et al., “Functional food science and gastrointestinal physiology and function,” British Journal of Nutrition, vol. 80, no. 1, pp. S147–S171, 1998. View at Google Scholar · View at Scopus
  14. A. S. Naidu, W. R. Bidlack, and R. A. Clemens, “Probiotic spectra of lactic acid bacteria (LAB),” Critical Reviews in Food Science and Nutrition, vol. 39, no. 1, pp. 13–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. de Vrese and J. Schrezenmeir, “Probiotics, prebiotics, and synbiotics,” Advances in Biochemical Engineering/Biotechnology, vol. 111, pp. 1–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. H. J. Roy and B. Kalicki, “Probiotics,” Pennington Nutrition, vol. 5, pp. 1–3, 2009. View at Google Scholar
  17. Y. K. Lee and S. Salminen, “The coming of age of probiotics,” Trends in Food Science and Technology, vol. 6, no. 7, pp. 241–245, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Rivera-Espinoza and Y. Gallardo-Navarro, “Non-dairy probiotic products,” Food Microbiology, vol. 27, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. C. Brown and A. Valiere, “Probiotics and medical nutrition therapy,” Nutrition in Clinical Care, vol. 7, no. 2, pp. 56–68, 2004. View at Google Scholar · View at Scopus
  20. G. R. Lichtenstein, The Clinician’s Guide to Inflammatory Bowel Disease, Slack, Thorofare, NJ, USA, 2003.
  21. L. V. McFarland and G. W. Elmer, “Biotherapeutic agents: past, present and future,” Microecology and Therapy, vol. 23, pp. 46–73, 1995. View at Google Scholar
  22. R. W. Jack, J. R. Tagg, and B. Ray, “Bacteriocins of gram-positive bacteria,” Microbiological Reviews, vol. 59, no. 2, pp. 171–200, 1995. View at Google Scholar · View at Scopus
  23. G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” Journal of Nutrition, vol. 125, no. 6, pp. 1401–1412, 1995. View at Google Scholar · View at Scopus
  24. M. B. Roberfroid, “Prebiotics and probiotics: are they functional foods?” American Journal of Clinical Nutrition, vol. 71, no. 6, pp. 1682S–1687S, 2000. View at Google Scholar · View at Scopus
  25. P. C. Macgillivray, H. V. Finlay, and T. B. Binns, “Use of lactulose to create a preponderance of Lactobacilli in the intestine of bottle-fed infants,” Scottish Medical Journal, vol. 4, no. 4, pp. 182–189, 1959. View at Google Scholar · View at Scopus
  26. G. R. Gibson and R. Fuller, “Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use,” Journal of Nutrition, vol. 130, no. 2, pp. 391S–395S, 2000. View at Google Scholar · View at Scopus
  27. L.-G. Ooi and M.-T. Liong, “Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings,” International Journal of Molecular Sciences, vol. 11, no. 6, pp. 2499–2522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. H. Cummings, G. T. Macfarlane, and H. N. Englyst, “Prebiotic digestion and fermentation,” American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 415–420, 2001. View at Google Scholar · View at Scopus
  29. D. S. Newburg, “Innate immunity and human milk,” Journal of Nutrition, vol. 135, no. 5, pp. 1308–1312, 2005. View at Google Scholar · View at Scopus
  30. M. B. De Morais and C. M. A. Jacob, “The role of probiotics and prebiotics in pediatric practice,” Jornal de Pediatria, vol. 82, no. 2, pp. S189–S197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Ziemer and G. R. Gibson, “An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies,” International Dairy Journal, vol. 8, no. 5-6, pp. 473–479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Chikai, H. Nakao, and K. Uchida, “Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats,” Lipids, vol. 22, no. 9, pp. 669–671, 1987. View at Publisher · View at Google Scholar · View at Scopus
  33. D. K. Walker and S. E. Gilliland, “Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus,” Journal of dairy science, vol. 76, no. 4, pp. 956–961, 1993. View at Google Scholar · View at Scopus
  34. I. De Smet, L. van Hoorde, N. De Saeyer, M. Vande Woestyne, and W. Verstraete, “In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity,” Microbial Ecology in Health and Disease, vol. 7, no. 6, pp. 315–329, 1994. View at Google Scholar · View at Scopus
  35. O. Oner, B. Aslim, and S. B. Aydaş, “Mechanisms of cholesterol-lowering effects of lactobacilli and bifidobacteria strains as potential probiotics with their bsh gene analysis,” Journal of Molecular Microbiology and Biotechnology, vol. 24, no. 1, pp. 12–18, 2013. View at Google Scholar
  36. K. Tahri, J. P. Grill, and F. Schneider, “Bifidobacteria strain behavior toward cholesterol: coprecipitation with bile salts and assimilation,” Current Microbiology, vol. 33, no. 3, pp. 187–193, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. M. L. Jones, H. Chen, W. Ouyang, T. Metz, and S. Prakash, “Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 1, pp. 61–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H.-J. Lim, S.-Y. Kim, and W.-K. Lee, “Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use,” Journal of Veterinary Science, vol. 5, no. 4, pp. 391–395, 2004. View at Google Scholar · View at Scopus
  39. G. V. Mann and A. Spoerry, “Studies of a surfactant and cholesteremia in the Maasai,” American Journal of Clinical Nutrition, vol. 27, no. 5, pp. 464–469, 1974. View at Google Scholar · View at Scopus
  40. J. W. Anderson and S. E. Gilliland, “Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans,” Journal of the American College of Nutrition, vol. 18, no. 1, pp. 43–50, 1999. View at Google Scholar · View at Scopus
  41. M. T. Liong and N. P. Shah, “Acid and bile tolerance and cholesterol removal ability of lactobacilli strains,” Journal of Dairy Science, vol. 88, no. 1, pp. 55–66, 2005. View at Google Scholar · View at Scopus
  42. J. Z. Xiao, S. Kondo, N. Takahashi et al., “Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers,” Journal of Dairy Science, vol. 86, no. 7, pp. 2452–2461, 2003. View at Google Scholar · View at Scopus
  43. B. Lavanya, S. Sowmiya, S. Balaji, and B. Muthuvelan, “Plasmid profiling and curing of Lactobacillus strains isolated from fermented milk for probiotic applications,” Advance Journal of Food Science and Technology, vol. 3, no. 2, pp. 95–101, 2011. View at Google Scholar · View at Scopus
  44. Y. Kim, J. Y. Whang, K. Y. Whang, S. Oh, and S. H. Kim, “Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 6, pp. 1483–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. I. P. Kaur, K. Chopra, and A. Saini, “Probiotics: potential pharmaceutical applications,” European Journal of Pharmaceutical Sciences, vol. 15, no. 1, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. R. G. Crittenden and M. J. Playne, “Production, properties and applications of food-grade oligosaccharides,” Trends in Food Science and Technology, vol. 7, no. 11, pp. 353–361, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. T. S. Manning and G. R. Gibson, “Prebiotics,” Best Practice and Research: Clinical Gastroenterology, vol. 18, no. 2, pp. 287–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Brighenti, M. C. Casiraghi, E. Canzi, and A. Ferrari, “Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers,” European Journal of Clinical Nutrition, vol. 53, no. 9, pp. 726–733, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. L. Fernandez, S. Roy, and M. Vergara-Jimenez, “Resistant starch and cholestyramine have distinct effects on hepatic cholesterol metabolism in guinea pigs fed a hypercholesterolemic diet,” Nutrition Research, vol. 20, no. 6, pp. 837–849, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Causey, J. M. Feirtag, D. D. Gallaher, B. C. Tungland, and J. L. Slavin, “Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men,” Nutrition Research, vol. 20, no. 2, pp. 191–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Mortensen, M. Poulsen, and H. Frandsen, “Effect of a long-chained fructan Raftiline HP on blood lipids and spontaneous atherosclerosis in low density receptor knockout mice,” Nutrition Research, vol. 22, no. 4, pp. 473–480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M.-L. Favier, C. Moundras, C. Demigne, and C. Remesy, “Fermentable carbohydrates exert a more potent cholesterol-lowering effect than cholestyramine,” Biochimica et Biophysica Acta, vol. 1258, no. 2, pp. 115–121, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. M. T. Liong and N. P. Shah, “Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats,” Journal of Dairy Science, vol. 89, no. 5, pp. 1390–1399, 2006. View at Google Scholar · View at Scopus
  54. G. Schaafsma, W. J. A. Meuling, W. Van Dokkum, and C. Bouley, “Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers,” European Journal of Clinical Nutrition, vol. 52, no. 6, pp. 436–440, 1998. View at Google Scholar · View at Scopus