Table of Contents
Chinese Journal of Biology
Volume 2014, Article ID 813201, 7 pages
http://dx.doi.org/10.1155/2014/813201
Research Article

Canthium parviflorum Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

Department of Studies in Food Science and Nutrition, University of Mysore, Mysore 570006, India

Received 12 January 2014; Accepted 16 March 2014; Published 10 April 2014

Academic Editors: L. Corazzi, D. Junbao, and Y. Liu

Copyright © 2014 Vanitha Reddy Palvai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lugasi, J. Hóvári, K. V. Sági, and L. Bíró, “The role of antioxidant phytonutrients in the prevention of diseases,” Acta Biologica Szegediensis, vol. 47, no. 1–4, pp. 119–125, 2003. View at Google Scholar · View at Scopus
  2. N. Nakatani, “Antioxidants from spices and herbs,” in Natural Antioxidants. Chemistry, Health Effects and Applications, pp. 64–73, AOCS Press, Champaign, Ill, USA, 1997. View at Google Scholar
  3. D. Prakash, S. Suri, G. Upadhyay, and B. N. Singh, “Total phenol, antioxidant and free radical scavenging activities of some medicinal plants,” International Journal of Food Sciences and Nutrition, vol. 58, no. 1, pp. 18–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Kaur and H. C. Kapoor, “Antioxidants in fruits and vegetables—the millennium's health,” International Journal of Food Science and Technology, vol. 36, no. 7, pp. 703–725, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Urooj and P. V. Reddy, “Moringa oleifera: antioxidant properties and stability of various solvent extracts,” International Journal of Pharmaceutical Science and Biotechnology, vol. 1, no. 1, pp. 1–6, 2010. View at Google Scholar
  6. P. V. Reddy and A. Urooj, “Proximate, phytochemical profile and antioxidant activity (in vitro and ex vivo) of Morus indica varieties,” International Journal of Pharmaceutical Sciences and Research, vol. 4, no. 4, pp. 1626–1634, 2013. View at Google Scholar
  7. P. V. Reddy and A. Urooj, “Antioxidant properties and stability of Aegle marmelos leaves extracts,” Journal of Food Science and Technology, vol. 50, no. 1, pp. 135–140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. P. V. Reddy, S. Desai, F. Ahmed, and A. Urooj, “Antioxidant properties and stability of Raphanus sativus extracts,” Journal of Pharmacy Research, vol. 3, no. 3, pp. 658–661, 2011. View at Google Scholar
  9. P. V. Reddy, N. Sahana, and A. Urooj, “Antioxidant activity of Aegle marmelos and Psidium guajava leaves,” International Journal of Medicinal and Aromatic Plants, vol. 2, no. 1, pp. 155–160, 2012. View at Google Scholar
  10. M. Ayyanar, K. Sankarasivaraman, and S. Ignacimuthu, “Traditional herbal medicines used or the treatment of diabetes among two major tribal groups in south Tamil Nadu, India,” Ethnobotanical Leaflets, vol. 12, pp. 276–280, 2008. View at Google Scholar
  11. S. Chandra Kala, K. Mallikarjuna, and P. Arun, “Qualitative phyto chemical analysis of seed and leaf callus extracts of Canthium parviflorum Lam. Guntur District, Andhra, Pradesh,” International Journal of Pharma and Bio Sciences, vol. 3, no. 4, pp. 177–182, 2012. View at Google Scholar
  12. AOAC, Official Methods of Analysis, AOAC International, Washington, DC, USA, 14th edition, 1984.
  13. S. Ranganna, Handbook of Analysis and Quality Control for Fruits and Vegetables Products, McGrow-Hill, New Delhi, India, 2nd edition, 1999.
  14. E. Beutler and B. M. Kelly, “The effect of sodium nitrite on red cell GSH,” Experientia, vol. 19, no. 2, pp. 96–97, 1963. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Slinkard and V. L. Singleton, “Total phenol analysis: automation and comparison with manual methods,” American Journal of Enology and Viticare, vol. 28, pp. 49–55, 1967. View at Google Scholar
  16. G. Miliauskas, P. R. Venskutonis, and T. A. van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Fan, T. Zheng, Y. Chen, and G. Yang, “Chemical constituents with free-radical-scavenging activities from the stem of Fissistigma polyanthum,” Pharamacognosy Magazine, vol. 8, no. 30, pp. 98–102, 2012. View at Google Scholar
  18. A. Yildirim, A. Mavi, and A. A. Kara, “Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts,” Journal of the Science of Food and Agriculture, vol. 83, no. 1, pp. 64–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. I. F. F. Benzie and J. J. Strain, “Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration,” Methods in Enzymology, vol. 299, pp. 15–27, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Tamura and A. Yamagami, “Antioxidative activity of monoacylated anthocyanins isolated from Muscat Bailey A grape,” Journal of Agricultural and Food Chemistry, vol. 42, no. 8, pp. 1612–1615, 1994. View at Google Scholar · View at Scopus
  21. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  22. D. J. Shapiro and V. W. Rodwell, “Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis,” The Journal of Biological Chemistry, vol. 246, no. 10, pp. 3210–3216, 1971. View at Google Scholar · View at Scopus
  23. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Arabshahi-Delouee, V. Devi, and A. Urooj, “Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability,” Food Chemistry, vol. 100, no. 3, pp. 1100–1105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Mandal, S. Yadav, S. Yadav, and R. K. Nema, “Antioxidants: a review,” Journal of Chemical and Pharmaceutical Research, vol. 1, no. 1, pp. 102–104, 2009. View at Google Scholar
  26. V. K. Gupta and S. K. Gupta, “Plants as natural antioxidants,” Natural Product Radiance, vol. 5, no. 6, pp. 326–334, 2006. View at Google Scholar
  27. S. Arabshahi-Delouee and A. Urooj, “Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves,” Food Chemistry, vol. 102, no. 4, pp. 1233–1240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-C. Wong, H.-B. Li, K.-W. Cheng, and F. Chen, “A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay,” Food Chemistry, vol. 97, no. 4, pp. 705–711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Lizcano, M. Viloria-Bernal, F. Vicente et al., “Lipid oxidation inhibitory effects and phenolic composition of aqueous extracts from medicinal plants of colombian amazonia,” International Journal of Molecular Sciences, vol. 13, no. 5, pp. 5454–5467, 2012. View at Google Scholar
  30. S. M. Zachariah, N. A. Aleykutty, V. Viswanad, S. Jacob, and V. Prabhakar, “In-vitro antioxidant potential of methanolic extracts of Mirabilis jalapa Linn,” Free Radicals and Antioxidants, vol. 1, no. 4, pp. 82–86, 2011. View at Google Scholar
  31. P. V. Reddy, M. Sowmya, and A. Urooj, “Abrus precatorius leaves: antioxidant activity in food and biological systems, pH and temperature stability,” International Journal of Medicinal Chemistry, vol. 2014, Article ID 748549, 7 pages, 2014. View at Publisher · View at Google Scholar
  32. P. V. Reddy, A. Urooj, and A. Kumar, “Evaluation of antioxidant activity of some plant extracts and their application in biscuits,” Food Chemistry, vol. 90, no. 1-2, pp. 317–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. H. Mansour and A. H. Khalil, “Evaluation of antioxidant activity of some plant extracts and their application to ground beef patties,” Food Chemistry, vol. 69, no. 2, pp. 135–141, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. H. Azizah, N. M. Nik Ruslawati, and T. Swee Tee, “Extraction and characterization of antioxidant from cocoa by-products,” Food Chemistry, vol. 64, no. 2, pp. 199–202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. G. Miguel, “Antioxidant activity of medicinal and aromatic plants. A review,” Flavour and Fragrance Journal, vol. 25, no. 5, pp. 291–312, 2010. View at Publisher · View at Google Scholar · View at Scopus