Table of Contents
Chinese Journal of Biology
Volume 2014 (2014), Article ID 854157, 8 pages
http://dx.doi.org/10.1155/2014/854157
Research Article

Restorative Prospective of Powdered Seeds Extract of Garcinia kola in Chrysichthys furcatus Induced with Glyphosate Formulation

1Department of Biological Sciences, Federal University Otuoke, Nigeria
2Department of Animal and Environmental Biology (AEB), University of Benin, Benin City, Nigeria

Received 23 September 2013; Accepted 20 October 2013; Published 21 January 2014

Academic Editors: Y. Chen and Z. Qiusheng

Copyright © 2014 T. O. Ikpesu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Grover, S. Yadav, and V. Vats, “Medicinal plants of India with anti-diabetic potential,” Journal of Ethnopharmacology, vol. 81, no. 1, pp. 81–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Weber, L. Christen, M. Loy et al., “Randomized, placebo-controlled trial of Chinese herb therapy for HIV-1- infected individuals,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 22, no. 1, pp. 56–64, 1999. View at Google Scholar · View at Scopus
  3. K. S. Dhaliwal, “Inventor. Method and composition for treatment of diabetes,” US Patent. 5886029. 1999, 1999.
  4. S. S. Gupta, S. C. Verma, V. P. Garg, and M. Rai, “Anti-diabetic effects of Tinospora cardifolia. I. Effect on fasting blood sugar level, glucose tolerance and adrenaline induced hyperglycaemia,” The Indian Journal of Medical Research, vol. 55, no. 7, pp. 733–745, 1967. View at Google Scholar · View at Scopus
  5. P. Ravikumar and C. V. Anuradha, “Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats,” Phytotherapy Research, vol. 13, pp. 197–201, 1999. View at Google Scholar
  6. P. Khosla, D. D. Gupta, and R. K. Nagpal, “Effect of Trigonella foenum graecum (Fenugreek) on blood glucose in normal and diabetic rats,” Indian Journal of Physiology and Pharmacology, vol. 39, no. 2, pp. 173–174, 1995. View at Google Scholar · View at Scopus
  7. K. Regi Raphael, M. C. Sabu, and R. Kuttan, “Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential,” Indian Journal of Experimental Biology, vol. 40, no. 8, pp. 905–909, 2002. View at Google Scholar · View at Scopus
  8. U. J. Okoli, An Investigation into the Hypoglycemic Activity of GB1 Biflavonoids of Garcinia Kola, B. Pharma Project, University of Nigeria, Nsukka, Nigeria, 1991.
  9. O. O. Ebong and T. Korubo-Owiye, “Comparison of the effect of the seeds Garcinia kola on the gastric acid secretion in rats,” West African Journal of Pharmacology and Drug Research, vol. 12, pp. 51–54, 1996. View at Google Scholar
  10. G. C. Onunkwo, H. C. Egeonu, M. U. Adikwu, J. E. Ojile, and A. K. Olowosulu, “Some physical properties of tabletted seed of Garcinia kola (Heckel),” Chemical and Pharmaceutical Bulletin, vol. 52, no. 6, pp. 649–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Oluyemi, I. O. Omotuyi, O. R. Jimoh, O. A. Adesanya, C. L. Saalu, and S. J. Josiah, “Erythropoietic and anti-obesity effects of Garcinia cambogia (bitter kola) in Wistar rats,” Biotechnology and Applied Biochemistry, vol. 46, no. 1, pp. 69–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Mackeen, A. M. Ali, N. H. Lajis, K. Kawazu, H. Kikuzaki, and N. Nakatani, “Antifungal garcinia acid esters from the fruits of Garcinia atroviridis,” Zeitschrift fur Naturforschung C, vol. 57, no. 3-4, pp. 291–295, 2002. View at Google Scholar · View at Scopus
  13. M. M. Iwu, O. A. Igboko, O. K. Elekwa, and M. S. Tempesta, “Prevention of thioacetamide-induced hepatotoxicity by biflavanones of Garcinia kola,” Phytotherapy Research, vol. 4, no. 4, pp. 157–159, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. S. B. Olaleye and E. O. Farombi, “Analgesic and Ati inflammatory effects of Kolaviron,” African Journal of Biomedical Research, vol. 3, pp. 171–174, 2000. View at Google Scholar
  15. V. B. Braide, C. A. Agube, G. E. Essien, and F. V. Udoh, “Effect of Garcinia kola seed alkaloid extract on levels of gonadal hormones and pituitary gonadotrophins in rat serum,” Nigerian Journal of Physiological Sciences, vol. 18, pp. 59–64, 2003. View at Google Scholar
  16. A. O. Akpantah, A. A. Oremosu, C. C. Moronhna, J. B. Ekanem, and A. O. Okanlawon, “Effect of Garcinia kola seed extracts on ovulation, oestrous cycle, and foetal Development in Cyclic Sprague Dawley Rats,” Nigerian Journal of Physiological Sciences, vol. 20, no. 1-2, pp. 58–562, 2005. View at Google Scholar
  17. N. Gunsel and J. F. Kanig, “Tablets,” in Theory and of Industrial Pharmacy, L. Lachman, H. A. Liberman, J. L. Kanig et al., Eds., Lea and Febiger, Philadelphia, Pa, USA, 2nd edition, 1976. View at Google Scholar
  18. L. Graves, “Roundup: Birth Defects Caused by World's Top-Selling weedkiller,” 2011.
  19. R. A. Relyea, “The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities,” Ecological Applications, vol. 15, no. 2, pp. 618–627, 2005. View at Google Scholar · View at Scopus
  20. J. A. Springett and R. A. J. Gray, “Effect of repeated low doses of biocides on the earthworm Aporrectodea caliginosa in laboratory culture,” Soil Biology and Biochemistry, vol. 24, no. 12, pp. 1739–1744, 1992. View at Google Scholar · View at Scopus
  21. S. A. Hassan, F. Bigler, H. Bogenschütz et al., “Results of the fifth joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and beneficial organisms’,” Entomophaga, vol. 36, no. 1, pp. 55–67, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Paganelli, V. Gnazzo, H. Acosta, S. L. López, and A. E. Carrasco, “Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling,” Chemical Research in Toxicology, vol. 23, no. 10, pp. 1586–1595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Doublet, L. Mamy, and E. Barriuso, “Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment,” Chemosphere, vol. 77, no. 4, pp. 582–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Chivian and A. Bernstein, in Threatened Groups of Organisms Valuable to MedicineSustaining Life: How Human Health Depends on Biodiversity, E. Chivian, Ed., p. 209, Oxford University Press, New York, NY, USA, 2008.
  25. J. P. Giesy, S. Dobson, and K. R. Solomon, “Ecotoxicological risk assessment for Roundup herbicide,” Reviews of Environmental Contamination and Toxicology, vol. 167, pp. 35–120, 2000. View at Google Scholar · View at Scopus
  26. J. Salbego, A. Pretto, C. R. Gioda et al., “Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in Piava (leporinus obtusidens),” Archives of Environmental Contamination and Toxicology, vol. 58, no. 3, pp. 740–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. O. A. Oyelese and E. O. Faturoti, “Growth and mortality estimates in Clarias gariepinus fed graded levels of processed cassava peels,” Journal of Tropical Forest Resources, vol. 11, pp. 71–81, 1995. View at Google Scholar
  28. OECD (Organization for Economic Cooperation and Development), Guideline for the Testing of Chemicals, Fish, acute toxicity test, No. 203, 1992.
  29. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Waste Water, American Public Health Association, Washington, DC, USA, 20th edition, 1998.
  30. D. L. Reish and O. S. Oshida, “Manual of methods in aquatic environment research. Part 10. Short- term static Bioassays,” FAO Fisheries Technical Paper 247, Rome, Italy, 1987. View at Google Scholar
  31. D. J. Finney, Probit Analysis, Cambridge University Press, Cambridge, UK, 1971.
  32. OECD, “OECD Guideline for the Testing of Chemicals 407, ’’Reapeted Dose 28-day Oral Toxicity Study in Rodent,” adopted on July 1995, 1997.
  33. C. E. Boyd and C. S. Tucker, Water Quality and Pond Soil Analysis for Aquaculture, vol. 1014, Alabama Agricultural Experiment Station, Auburn University, Auburn, Ala, USA, 1992.
  34. J. L. Congleton and W. J. LaVoie, “Comparison of blood chemistry values for samples collected from juvenile Chinook salmon by three methods,” Journal of Aquatic Animal Health, vol. 13, pp. 168–172, 2001. View at Google Scholar
  35. V. Rusia and S. K. Sood, “Routine haematological test,” in Medical Laboratory Technology, K. L. Mukerjee, Ed., pp. 252–258, Tata McGraw Hill Publishing, 1992. View at Google Scholar
  36. H. Bomski, Postawowe Laboratoryjne Badania Hematologiczne. (Basic Laboratory Techniques in Haematology), PZWL, Warsaw, Poland, 1995 (polish).
  37. D. L. Drabkin, “Spectrophotometric studies, XIV, The crystallographic and optimal properties of the haemoglobin of man in comparison with those of other species,” Journal of Biological Chemistry, vol. 164, pp. 703–723, 1946. View at Google Scholar
  38. P. B. Goldenfarb, F. P. Bowyer, E. Hall, and E. Brosious, “Reproducibility in the hematology laboratory: the microhematocrit determination,” American Journal of Clinical Pathology, vol. 56, no. 1, pp. 35–39, 1971. View at Google Scholar · View at Scopus
  39. L. R. Murrell and P. F. Nace, “Determination of glucose in fish blood; a modification of the Folin-Malmros microprocedure,” Canadian Journal of Biochemistry and Physiology, vol. 36, no. 11, pp. 1121–1124, 1958. View at Google Scholar · View at Scopus
  40. P. Trinder, “Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen,” Journal of Clinical Pathology, vol. 22, no. 2, pp. 158–161, 1969. View at Google Scholar · View at Scopus
  41. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  42. G. Barseghian, R. Levine, and P. Epps, “Direct effect of cortisol and cortisone on insulin and glucagon secretion,” Endocrinology, vol. 111, no. 5, pp. 1648–1651, 1982. View at Google Scholar · View at Scopus
  43. S. K. Chiu, C. P. Collier, A. F. Clark, and K. E. Wynn-Edwards, “Salivary cortisol on ROCHE Elecsys immunoassay system: pilot biological variation studies,” Clinical Biochemistry, vol. 36, no. 3, pp. 211–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Petrie and P. Watson, Statistics for Veterinary and Animal Science, vol. 1, Blackwell Science, Oxford, UK, 1st edition, 1999.
  45. R. A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, London, UK, 11th edition, 1950.
  46. A. K. Sinha, V. P. Singh, and K. Srivastava, “Physico-chemical studies on river Ganga and its tributaries in Uttar Pradesh-the present status,” in Pollution and Biomonitoring of Indian Rivers, R. K. Trevedi, Ed., ABD publishers, Jaipur, India, 2000. View at Google Scholar
  47. A. M. Kalwale and A. Padmakar, “Determination of physico-chemical parameters of Deoli Bhorus dam water,” Advances in Applied Science Res, vol. 3, pp. 273–279, 2012. View at Google Scholar
  48. M. A. Haniffa and S. M. Vijayarani, “Hematological effects of textile mill effluent on freshwater fish Oreochromis mossambicus (Trewaves),” Indian Journal of Experimental Biology, vol. 27, no. 5, pp. 476–478, 1989. View at Google Scholar · View at Scopus
  49. M. Z. Vosyliene and N. Kazlauskiene, “Evaluation of the Svede pond water effect on fish (after accidental discharge of the Kairiai dump filtrate into the environment) and management of water bodies,” in Proceedings of the International Scientific Conference, pp. 219–223, Kaunas, 2004.
  50. T. O. Ikpesu, Responses of Clarias gariepinus and Oreochromis niloticus to endosulfan [Ph.D. thesis], Department the Department of Animal and Environmental Biology, University of Benin Nigeria, 2010.
  51. N. Seth and K. K. Saxena, “Hematological responses in a freshwater fish Channa punctatus due to fenvalerate,” Bulletin of Environmental Contamination and Toxicology, vol. 71, no. 6, pp. 1192–1199, 2003. View at Google Scholar · View at Scopus
  52. “Fresh water,” in Handbook of Ecotoxicology, P. Calins, Ed., vol. 68 of Osneymeed OX 20EL, p. 73, Black Well Science, 1995.
  53. Z. Svobodova, D. Ravds, and J. Palackova, Unified Methods of Haematological Examination of Fish, Research Institute of Fish Culture and Hydrobiology, Vodňany, Czech Republic, 1991.
  54. V. Lusková, M. Svoboda, and J. Kolářová, “The effect of diazinon on blood plasma biochemistry in carp (Cyprinus carpio L.),” Acta Veterinaria Brno, vol. 71, no. 1, pp. 117–123, 2002. View at Google Scholar · View at Scopus
  55. J. Nemcsok and L. Boross, “Comparative studies on the sensitivity of different fish species to metal pollution,” Acta Biologica Academiae Scientiarum Hungaricae, vol. 33, no. 1, pp. 23–27, 1982. View at Google Scholar · View at Scopus
  56. G. Wedemeyer, D. J. Mcleay, and C. P. Good year, “Assessing the tolerance of fish and fish population to environmental stress. The problems and methods of monitoring,” in Contaminant Effects on Fisheries, W. V. Cairns, P. V. Hodson, and J. O. Nriagu, Eds., pp. 164–195, John Wiley and Son, New York, NY, USA, 1981. View at Google Scholar
  57. N. N. Sing and A. K. Srivastava, “Effects of endosulfan on fish carbohydrate metabolism,” Ecotoxicology and Environmental Safety, vol. 5, pp. 412–417, 1981. View at Google Scholar
  58. R. C. Andrews and B. R. Walker, “Glucocorticoids and insulin resistance: old hormones, new targets,” Clinical Science, vol. 96, no. 5, pp. 513–523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Omoregie, E. B. C. Ofodike, and R. I. Keke, “Tissue chemistry of Oreochromis niloticus exposed to sublethal concentration of gammalin-20 and acetellic -25EC,” Journal of Aquatic Science, vol. 5, pp. 33–36, 1990. View at Google Scholar
  60. S. R. Sharma, S. K. Dwivedi, and D. Swarup, “Hypoglycaemic, antihyperglycaemic and hypolipidemic activities of Caesalpinia bonducella seeds in rats,” Journal of Ethnopharmacology, vol. 58, no. 1, pp. 39–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. E. H. Karunanayake, J. Welihinda, S. R. Sirimanne, and G. Sinnadorai, “Oral hypoglycaemic activity of some medicinal plants of Sri Lanka,” Journal of Ethnopharmacology, vol. 11, no. 2, pp. 223–231, 1984. View at Google Scholar · View at Scopus
  62. A. O. Aderibigbe, T. S. Emudianughe, and B. A. Lawal, “Antihyperglycemic effect of Mangifera indica in rat,” Phytotherapy Research, vol. 13, pp. 504–507, 1999. View at Google Scholar
  63. B. A. Shibib, L. A. Khan, and R. Rahman, “Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase,” Biochemical Journal, vol. 292, no. 1, pp. 267–270, 1993. View at Google Scholar · View at Scopus
  64. F. Jenkins, J. Smith, B. Rajanna et al., “Effect of sub-lethal concentrations of endosulfan on hematological and serum biochemical parameters in the carp Cyprinus carpio,” Bulletin of Environmental Contamination and Toxicology, vol. 70, no. 5, pp. 993–997, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Takahashi and D. A. Hood, “Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria: differential import regulation in distinct subcellular regions,” Journal of Biological Chemistry, vol. 271, no. 44, pp. 27285–27291, 1996. View at Publisher · View at Google Scholar · View at Scopus
  66. S. M. Kamble, P. L. Kamlakar, S. Vaidya, and V. D. Bambole, “Influence of Coccinia indica on certain enzymes in glycolytic and lipolytic pathway in human diabetes,” Indian Journal of Medical Sciences, vol. 52, no. 4, pp. 143–146, 1998. View at Google Scholar · View at Scopus
  67. J. Du, Y. Wang, R. Hunter et al., “Dynamic regulation of mitochondrial function by glucocorticoids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3543–3548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Lösel and M. Wehling, “Nongenomic actions of steroid hormones,” Nature Reviews Molecular Cell Biology, vol. 4, no. 1, pp. 46–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Pathak, A. Banerjee, S. Paul, and A. R. Khuda-Bukhsh, “Protective potentials of a plant extract (Lycopodium clavatum) on mice chronically fed hepato-carcinogens,” Indian Journal of Experimental Biology, vol. 47, no. 7, pp. 602–607, 2009. View at Google Scholar · View at Scopus