Table of Contents Author Guidelines Submit a Manuscript
Contrast Media & Molecular Imaging
Volume 2018, Article ID 5272014, 7 pages
https://doi.org/10.1155/2018/5272014
Research Article

Early Detection of Aβ Deposition in the 5xFAD Mouse by Amyloid PET

1Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
2Radiological & Medico-Oncological Sciences, University of Science and Technology, Daejeon, Republic of Korea
3Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
4Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
5Research Institute of Labeling, FutureChem Co., Ltd., Seoul, Republic of Korea
6Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea

Correspondence should be addressed to Ji-Ae Park; rk.er.smarik@krapj and Jae Yong Choi; rk.er.smarik@ynahms

Received 18 September 2017; Revised 12 January 2018; Accepted 29 January 2018; Published 28 February 2018

Academic Editor: Anne Roivainen

Copyright © 2018 Se Jong Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Poisnel, A.-S. Hérard, N. El Tannir El Tayara et al., “Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 9, pp. 1995–2005, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. V. L. Villemagne, K. E. Pike, D. Darby et al., “Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease,” Neuropsychologia, vol. 46, no. 6, pp. 1688–1697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Nordberg, “PET imaging of amyloid in Alzheimer's disease,” The Lancet Neurology, vol. 3, no. 9, pp. 519–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain imaging in Alzheimer disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. W. E. Klunk, H. Engler, A. Nordberg et al., “Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B,” Annals of Neurology, vol. 55, no. 3, pp. 306–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Mountz, C. M. Laymon, A. D. Cohen et al., “Comparison of qualitative and quantitative imaging characteristics of [11C]PiB and [18F]flutemetamol in normal control and Alzheimer's subjects,” NeuroImage: Clinical, vol. 9, pp. 592–598, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. I.-T. Hsiao, C.-C. Huang, C.-J. Hsieh et al., “Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: Preliminary studies,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 4, pp. 613–620, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Nelissen, K. Van Laere, L. Thurfjell et al., “Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease,” Journal of Nuclear Medicine, vol. 50, no. 8, pp. 1251–1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. G. J. O'Keefe, T. H. Saunder, S. Ng et al., “Radiation dosimetry of β-amyloid tracers 11C-PiB and 18F-BAY94-9172,” Journal of Nuclear Medicine, vol. 50, no. 2, pp. 309–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Poisnel, M. Dhilly, O. Moustié et al., “PET imaging with [18F]AV-45 in an APP/PS1-21 murine model of amyloid plaque deposition,” Neurobiology of Aging, vol. 33, no. 11, pp. 2561–2571, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Rojas, J. R. Herance, J. D. Gispert et al., “In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography,” Neurobiology of Aging, vol. 34, no. 7, pp. 1790–1798, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Von Reutern, B. Grünecker, B. H. Yousefi, G. Henriksen, M. Czisch, and A. Drzezga, “Voxel-based analysis of amyloid-burden measured with [11c]pib pet in a double transgenic mouse model of alzheimer's disease,” Molecular Imaging and Biology, vol. 15, no. 5, pp. 576–584, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Snellman, F. R. López-Picón, J. Rokka et al., “Longitudinal amyloid imaging in mouse brain with 11C-PIB: Comparison of APP23, Tg2576, and APPswe-PS1dE9 mouse models of Alzheimer disease,” Journal of Nuclear Medicine, vol. 54, no. 8, pp. 1434–1441, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Brendel, A. Jaworska, E. Grießinger et al., “Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models,” PLoS ONE, vol. 10, no. 2, Article ID e0116678, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. B. S. Lee, S. Y. Chu, H. R. Kwon et al., “Synthesis and evaluation of 6-(3-[18F]fluoro-2-hydroxypropyl)-substituted 2-pyridylbenzothiophenes and 2-pyridylbenzothiazoles as potential PET tracers for imaging Aβ plaques,” Bioorganic & Medicinal Chemistry, vol. 24, no. 9, pp. 2043–2052, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Oh, M. H. Kim, S. J. Han et al., “Preliminary PET Study of 18F-FC119S in Normal and Alzheimer's Disease Models,” Molecular Pharmaceutics, vol. 14, no. 9, pp. 3114–3120, 2017. View at Publisher · View at Google Scholar · View at Scopus
  18. B. H. Byun, B. I. Kim, S. Y. Park et al., “Head-to-head comparison of 11C-PiB and 18F-FC119S for Aβ imaging in healthy subjects, mild cognitive impairment patients, and Alzheimer's disease patients,” Medicine (United States), vol. 96, no. 12, Article ID e6441, 2017. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Mullan, F. Crawford, K. Axelman et al., “A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N–terminus of β–amyloid,” Nature Genetics, vol. 1, no. 5, pp. 345–347, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. C. B. Eckman, N. D. Mehta, R. Crook et al., “A new pathogenic mutation in the APP gene (1716V) increases the relative proportion of Aβ42(43),” Human Molecular Genetics, vol. 6, no. 12, pp. 2087–2089, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Goate, M.-C. Chartier-Harlin, M. Mullan et al., “Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease,” Nature, vol. 349, no. 6311, pp. 704–706, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Citron, C. B. Eckman, T. S. Diehl et al., “Additive effects of PS1 and APP mutations on secretion of the 42- residue amyloid β-protein,” Neurobiology of Disease, vol. 5, no. 2, pp. 107–116, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Oakley, S. L. Cole, S. Logan et al., “Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation,” The Journal of Neuroscience, vol. 26, no. 40, pp. 10129–10140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. I. R. Macdonald, D. R. DeBay, G. A. Reid et al., “Early detection of cerebral glucose uptake changes in the 5XFAD mouse,” Current Alzheimer Research, vol. 11, no. 5, pp. 450–460, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Schwarz, M. L. Senjem, J. L. Gunter et al., “Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE,” NeuroImage, vol. 144, pp. 113–127, 2017. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Logan, J. S. Fowler, N. D. Volkow, G.-J. Wang, Y.-S. Ding, and D. L. Alexoff, “Distribution volume ratios without blood sampling from graphical analysis of PET data,” Journal of Cerebral Blood Flow & Metabolism, vol. 16, no. 5, pp. 834–840, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Matsubara, M. Ibaraki, H. Shimada et al., “Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET,” NeuroImage, vol. 143, pp. 316–324, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Kimura and M. Ohno, “Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model,” Neurobiology of Disease, vol. 33, no. 2, pp. 229–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. E. McGowan, J. Eriksen, and M. Hutton, “A decade of modeling Alzheimer's disease in transgenic mice,” Trends in Genetics, vol. 22, no. 5, pp. 281–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Willuweit, J. Velden, R. Godemann et al., “Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer's disease,” PLoS ONE, vol. 4, no. 11, Article ID e7931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. F. Reilly, D. Games, R. E. Rydel et al., “Amyloid deposition in the hippocampus and entorhinal cortex: Quantitative analysis of a transgenic mouse model,” Proceedings of the National Acadamy of Sciences of the United States of America, vol. 100, no. 8, pp. 4837–4842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. G. A. Elder, M. A. Gama Sosa, and R. de Gasperi, “Transgenic mouse models of Alzheimer's disease,” Mount Sinai Journal of Medicine, vol. 77, no. 1, pp. 69–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Maeda, B. Ji, T. Irie et al., “Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography,” The Journal of Neuroscience, vol. 27, no. 41, pp. 10957–10968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Hall and E. D. Roberson, “Mouse models of Alzheimer's disease,” Brain Research Bulletin, vol. 88, no. 1, pp. 3–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. E. O. Aboagye, P. M. Price, and T. Jones, “In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography,” Drug Discovery Therapy, vol. 6, no. 6, pp. 293–302, 2001. View at Publisher · View at Google Scholar · View at Scopus