An HIV/AIDS model incorporating complacency for the adult population is formulated. Complacency is assumed a function of number of AIDS cases in a community with an inverse relation. A method to find the equilibrium state of the model is given by proving a stated theorem. An example to illustrate use of the theorem is also given. Model analysis and simulations show that complacency resulting from dependence of HIV transmission on number of AIDS cases in a community leads to damped periodic oscillations in the number of infectives with oscillations more marked at lower rates of progression to AIDS. The implications of these results to public health with respect to monitoring the HIV/AIDS epidemic and widespread use of antiretroviral (ARV) drugs is discussed.