Computational and Mathematical Methods in Medicine

Computational and Mathematical Methods in Medicine / 2009 / Article

Original Article | Open Access

Volume 10 |Article ID 970343 | 22 pages | https://doi.org/10.1080/17486700802200784

A Stochastic and State Space Model for Tumour Growth and Applications

Received18 Jun 2007
Accepted01 May 2008

Abstract

We develop a state space model documenting Gompertz behaviour of tumour growth. The state space model consists of two sub-models: a stochastic system model that is an extension of the deterministic model proposed by Gyllenberg and Webb (1991), and an observation model that is a statistical model based on data for the total number of tumour cells over time. In the stochastic system model we derive through stochastic equations the probability distributions of the numbers of different types of tumour cells. Combining with the statistic model, we use these distribution results to develop a generalized Bayesian method and a Gibbs sampling procedure to estimate the unknown parameters and to predict the state variables (number of tumour cells). We apply these models and methods to real data and to computer simulated data to illustrate the usefulness of the models, the methods, and the procedures.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

395 Views | 720 Downloads | 6 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.