Computational and Mathematical Methods in Medicine

Computational and Mathematical Methods in Medicine / 2010 / Article

Open Access

Volume 11 |Article ID 129689 | 15 pages | https://doi.org/10.1080/17486701003670833

A Classification System for Hospital-Based Infection Outbreaks

Received16 Feb 2009
Accepted21 Jan 2010

Abstract

Outbreaks of infection within semi-closed environments such as hospitals, whether inherent in the environment (such as Clostridium difficile (C.Diff) or Methicillinresistant Staphylococcus aureus (MRSA) or imported from the wider community (such as Norwalk-like viruses (NLVs)), are difficult to manage. As part of our work on modelling such outbreaks, we have developed a classification system to describe the impact of a particular outbreak upon an organization. This classification system may then be used in comparing appropriate computer models to real outbreaks, as well as in comparing different real outbreaks in, for example, the comparison of differing management and containment techniques and strategies. Data from NLV outbreaks in the Hull and East Yorkshire Hospitals NHS Trust (the Trust) over several previous years are analysed and classified, both for infection within staff (where the end of infection date may not be known) and within patients (where it generally is known). A classification system consisting of seven elements is described, along with a goodness-of-fit method for comparing a new classification to previously known ones, for use in evaluating a simulation against history and thereby determining how ‘realistic’ (or otherwise) it is.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

539 Views | 497 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.