Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 153212, 6 pages
http://dx.doi.org/10.1155/2012/153212
Research Article

Microdosimetry for Targeted Alpha Therapy of Cancer

1Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia
2Illawarra Cancer Care Centre, Wollongong, NSW 2522, Australia
3Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia
4Ingham Institute of Applied Medical Research, Faculty of Medicine, University of Western Sydney, Liverpool, NSW 2170, Australia

Received 3 July 2012; Accepted 25 July 2012

Academic Editor: Eva Bezak

Copyright © 2012 Chen-Yu Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Zalutsky and O. R. Pozzi, “Radioimmunotherapy with α-particle emitting radionuclides,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 4, pp. 289–296, 2004. View at Google Scholar · View at Scopus
  2. V. Rajkumar, J. L. Dearling, A. Packard, and R. B. Pedley, “Research Spotlight—radioimmunotherapy: optimizing delivery to solid tumors,” Therapeutic Delivery, vol. 2, no. 5, pp. 567–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Sgouros, “Alpha-particles for targeted therapy,” Advanced Drug Delivery Reviews, vol. 60, no. 12, pp. 1402–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Roeske and T. G. Stinchcomb, “Dosimetric framework for therapeutic alpha-particle emitters,” Journal of Nuclear Medicine, vol. 38, no. 12, pp. 1923–1929, 1997. View at Google Scholar · View at Scopus
  5. M. R. McDevitt, G. Sgouros, R. D. Finn et al., “Radioimmunotherapy with alpha-emitting nuclides,” European Journal of Nuclear Medicine, vol. 25, no. 9, pp. 1341–1351, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. G. Jurcic, S. M. Larson, G. Sgouros, M. R. McDevitt, R. D. Finn, and C. R. Divgi, “Targeted α particle immunotherapy for myeloid leukemia,” Blood, vol. 100, no. 4, pp. 1233–1239, 2002. View at Google Scholar · View at Scopus
  7. C. Raja, P. Graham, S. M. Abbas Rizvi et al., “Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma,” Cancer Biology and Therapy, vol. 6, no. 6, pp. 846–852, 2007. View at Google Scholar · View at Scopus
  8. B. J. Allen, C. Raja, S. Rizvi, E. Y. Song, and P. Graham, “Tumour anti-vascular alpha therapy: a mechanism for the regression of solid tumours in metastatic cancer,” Physics in Medicine and Biology, vol. 52, no. 13, pp. L15–L19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. J. Allen, “Can α-radioimmunotherapy increase efficacy for the systemic control of cancer?” Immunotherapy, vol. 3, no. 4, pp. 455–458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bardies and P. Pihet, “Dosimetry and microdosimetry of targeted radiotherapy,” Current Pharmaceutical Design, vol. 6, no. 14, pp. 1469–1502, 2000. View at Google Scholar · View at Scopus
  11. R. F. Hobbs, S. Baechler, D. X. Fu et al., “A model of cellular dosimetry for macroscopic tumors in radiopharmaceutical therapy,” Medical Physics, vol. 38, no. 6, pp. 2892–2903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. C. Karagiannis, “Comparison of different classes of radionuclides for potential use in radioimmunotherapy,” Hellenic Journal of Nuclear Medicine, vol. 10, no. 2, pp. 82–88, 2007. View at Google Scholar
  13. R. M. Macklis, B. M. Kinsey, A. I. Kassis et al., “Radioimmunotherapy with alpha-particle-emitting immunoconjugates,” Science, vol. 240, no. 4855, pp. 1024–1026, 1988. View at Google Scholar · View at Scopus
  14. H. Zaidi and G. Sgouros, Eds., Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine, vol. 9, vol. 30, Institute of physics, London, UK, 2003.
  15. T. G. Stinchcomb and J. C. Roeske, “Analytic microdosimetry for radioimmunotherapeutic alpha emitters,” Medical Physics, vol. 19, no. 6, pp. 1385–1394, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. McDevitt, G. Sgouros, R. D. Finn et al., “Radioimmunotherapy with alpha-emitting nuclides,” European Journal of Nuclear Medicine, vol. 25, no. 9, pp. 1341–1351, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sofou, “Radionuclide carriers for targeting of cancer,” International Journal of Nanomedicine, vol. 3, no. 2, pp. 181–199, 2008. View at Google Scholar · View at Scopus
  18. D. T. Goodhead, “Panel discussion: do non-targeted effects impact the relation between microdosimetry and risk?” Radiation Protection Dosimetry, vol. 143, no. 2–4, pp. 554–556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Y. Huang, B. M. Oborn, S. Guatelli, and B. J. Allen, “Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy,” Medical Physics, vol. 39, no. 3, pp. 1282–1288, 2012. View at Google Scholar
  20. J. L. Humm, J. C. Roeske, D. R. Fisher, and G. T. Y. Chen, “Microdosimetric concepts in radioimmunotherapy,” Medical Physics, vol. 20, no. 2, pp. 535–542, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. Goodhead, “Energy deposition stochastics and track structure: what about the target?” Radiation Protection Dosimetry, vol. 122, no. 1–4, pp. 3–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. E. Charlton, A. I. Kassis, and S. J. Adelstein, “A comparison of experimental and calculated survival curves for V79 cells grown as monolayers or in suspension exposed to alpha irradiation from 212Bi distributed in the growth medium,” Radiation Protection Dosimetry, vol. 52, no. 1–4, pp. 311–315, 1994. View at Google Scholar · View at Scopus
  23. W. C. Roesch, “Microdosimetry of internal sources,” Radiation Research, vol. 70, no. 3, pp. 494–510, 1977. View at Google Scholar · View at Scopus
  24. A. B. Rosenfeld, G. I. Kaplan, M. G. Carolan et al., “Simultaneous macro and micro dosimetry with MOSFETs,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 2693–2700, 1996. View at Google Scholar · View at Scopus
  25. P. D. Bradley and A. B. Rosenfeld, “Tissue equivalence correction for silicon microdosimetry detectors in boron neutron capture therapy,” Medical Physics, vol. 25, no. 11, pp. 2220–2225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. D. Bradley, A. B. Rosenfeld, B. Allen, J. Coderre, and J. Capala, “Performance of silicon microdosimetry detectors in boron neutron capture therapy,” Radiation Research, vol. 151, no. 3, pp. 235–243, 1999. View at Google Scholar · View at Scopus
  27. S. Incerti, N. Gault, C. Habchi et al., “A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit,” Radiation Protection Dosimetry, vol. 122, no. 1–4, pp. 327–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Y. Huang, S. Guatelli, B. M. Oborn, and B. J. Allen, “Background dose for systemic targeted Alpha therapy,” Progress in Nuclear Science and Technology, vol. 2, pp. 187–190, 2011. View at Google Scholar
  29. T. L. Rosenblat, M. R. McDevitt, D. A. Mulford et al., “Sequential cytarabine and α-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia,” Clinical Cancer Research, vol. 16, no. 21, pp. 5303–5311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Nikjoo, S. Uehara, D. Emfietzoglou, and L. Pinsky, “A database of frequency distributions of energy depositions in small-size targets by electrons and ions,” Radiation Protection Dosimetry, vol. 143, no. 2–4, pp. 145–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Humm and L. M. Chin, “A model of cell inactivation by alpha-particle internal emitters,” Radiation Research, vol. 134, no. 2, pp. 143–150, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. S. J. Kennel, R. Boll, M. Stabin, H. M. Schuller, and S. Mirzadeh, “Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi,” British Journal of Cancer, vol. 80, no. 1-2, pp. 175–184, 1999. View at Google Scholar · View at Scopus
  33. D. E. Charlton, “The survival of monolayers of cells growing in clusters irradiated by 211At appended to the cell surfaces,” Radiation Research, vol. 151, no. 6, pp. 750–753, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Kvinnsland, T. Stokke, and E. Aurlien, “Radioimmunotherapy with alpha-particle emitters: microdosimetry of cell with a heterogeneous antigen expression and with various diameters of cells and nuclei,” Radiation Research, vol. 155, no. 2, pp. 288–296, 2001. View at Google Scholar · View at Scopus
  35. S. Incerti, H. Seznec, M. Simon, P. Barberet, C. Habchi, and P. Moretto, “Monte Carlo dosimetry for targeted irradiation of individual cells using a microbeam facility,” Radiation Protection Dosimetry, vol. 133, no. 1, pp. 2–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Kennel, M. Stabin, J. C. Roeske et al., “Radiotoxicity of bismuth-213 bound to membranes of monolayer and spheroid cultures of tumor cells,” Radiation Research, vol. 151, no. 3, pp. 244–256, 1999. View at Google Scholar · View at Scopus
  37. N. Chouin, K. Bernardeau, F. Davodeau et al., “Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model—I. Presentation and validation of a microdosimetric model,” Radiation Research, vol. 171, no. 6, pp. 657–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Yao, K. Garmestani, K. J. Wong et al., “Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody,” Journal of Nuclear Medicine, vol. 42, no. 10, pp. 1538–1544, 2001. View at Google Scholar · View at Scopus
  39. G. Sgouros, J. C. Roeske, M. R. McDevitt et al., “MIRD pamphlet No. 22 (Abridged): Radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy,” Journal of Nuclear Medicine, vol. 51, no. 2, pp. 311–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Pohlman, J. Sweetenham, and R. M. Macklis, “Review of clinical radioimmunotherapy,” Expert Review of Anticancer Therapy, vol. 6, no. 3, pp. 445–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Nilsson, R. H. Larsen, S. D. Fosså et al., “First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases,” Clinical Cancer Research, vol. 11, no. 12, pp. 4451–4459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. B. J. Allen, “Clinical trials of targeted alpha therapy for cancer,” Reviews on Recent Clinical Trials, vol. 3, no. 3, pp. 185–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Zhu, M. R. Palmer, G. M. Makrigiorgos, and A. I. Kassis, “Solid-tumor radionuclide therapy dosimetry: new paradigms in view of tumor microenvironment and angiogenesis,” Medical Physics, vol. 37, no. 6, pp. 2974–2984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. I. Kassis, “Therapeutic radionuclides: biophysical and radiobiologic principles,” Seminars in Nuclear Medicine, vol. 38, no. 5, pp. 358–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. McDevitt, D. Ma, L. T. Lai et al., “Tumor therapy with targeted atomic nanogenerators,” Science, vol. 294, no. 5546, pp. 1537–1540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Schwartz, J. S. Jaggi, J. A. O'donoghue et al., “Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody,” Physics in Medicine and Biology, vol. 56, no. 3, pp. 721–733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Å. M. Ballangrud, W. H. Yang, S. Palm et al., “Alpha-particle emitting atomic generator (actinium-225)-labeled trastuzumab (Herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression,” Clinical Cancer Research, vol. 10, no. 13, pp. 4489–4497, 2004. View at Publisher · View at Google Scholar · View at Scopus