Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 192618, 9 pages
http://dx.doi.org/10.1155/2012/192618
Research Article

A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility

Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland

Received 27 September 2011; Accepted 31 October 2011

Academic Editor: Vikas Rai

Copyright © 2012 Amirhossein Jafari Bidhendi and Rami K. Korhonen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu, “Experimental techniques for single cell and single molecule biomechanics,” Materials Science and Engineering C, vol. 26, no. 8, pp. 1278–1288, 2006, Proceedings of the 1st TMS Symposium on Biological Materials Science. View at Publisher · View at Google Scholar
  2. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nature Materials, vol. 2, no. 11, pp. 715–725, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Titushkin and M. Cho, “Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells,” Biophysical Journal, vol. 93, no. 10, pp. 3693–3702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Sato, D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem, “Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties,” Journal of Biomechanical Engineering, vol. 112, no. 3, pp. 263–268, 1990. View at Google Scholar · View at Scopus
  5. S. C. W. Tan, W. X. Pan, G. Ma, N. Cai, K. W. Leong, and K. Liao, “Viscoelastic behaviour of human mesenchymal stem cells,” BMC Cell Biology, vol. 9, p. 40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. M. Darling, S. Zauscher, and F. Guilak, “Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy,” Osteoarthritis and Cartilage, vol. 14, no. 6, pp. 571–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. R. Jones, H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak, “Alterations in the young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage,” Journal of Biomechanics, vol. 32, no. 2, pp. 119–127, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. W. R. Trickey, F. P. T. Baaijens, T. A. Laursen, L. G. Alexopoulos, and F. Guilak, “Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration,” Journal of Biomechanics, vol. 39, no. 1, pp. 78–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. H. Zhou, C. T. Lim, and S. T. Quek, “Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation,” Mechanics of Advanced Materials and Structures, vol. 12, no. 6, pp. 501–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xu, Y. Tseng, and D. Wirtz, “Strain hardening of actin filament networks: regulation by the dynamic cross-linking protein α-actinin,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 35886–35892, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Stamenović and D. E. Ingber , “Models of cytoskeletal mechanics of adherent cells,” Biomechanics and Modeling in Mechanobiology, vol. 1, no. 1, pp. 95–108, 2002. View at Google Scholar
  12. J. Ohayon and P. Tracqui, “Computation of adherent cell elasticity for critical cell-bead geometry in magnetic twisting experiments,” Annals of Biomedical Engineering, vol. 33, no. 2, pp. 131–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Caille, O. Thoumine, Y. Tardy, and J. J. Meister, “Contribution of the nucleus to the mechanical properties of endothelial cells,” Journal of Biomechanics, vol. 35, no. 2, pp. 177–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Tracqui, J. Ohayon, and T. Boudou, “Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness,” Journal of Theoretical Biology, vol. 255, no. 1, pp. 92–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Kang, D. Panneerselvam, V. P. Panoskaltsis, S. J. Eppell, R. E. Marchant, and C. M. Doerschuk, “Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-α,” Biophysical Journal, vol. 94, no. 8, pp. 3273–3285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. McGarry, “Characterization of cell mechanical properties by computational modeling of parallel plate compression,” Annals of Biomedical Engineering, vol. 37, no. 11, pp. 2317–2325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Lulevich, T. Zink, H. Y. Chen, F. T. Liu, and G. Y. Liu, “Cell mechanics using atomic force microscopy-based single-cell compression,” Langmuir, vol. 22, no. 19, pp. 8151–8155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. B. Bernick, T. P. Prevost, S. Suresh, and S. Socrate, “Biomechanics of single cortical neurons,” Acta Biomaterialia, vol. 7, no. 3, pp. 1210–1219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. U. Unnikrishnan, V. U. Unnikrishnan, and J. N. Reddy, “Constitutive material modeling of cell: a micromechanics approach,” Journal of Biomechanical Engineering, vol. 129, no. 3, pp. 315–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Haider and F. Guilak, “Application of a three-dimensional poroelastic BEM to modeling the biphasic mechanics of cell-matrix interactions in articular cartilage,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 31-32, pp. 2999–3010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Zhang, “Oscillatory pressurization of an animal cell as a poroelastic spherical body,” Annals of Biomedical Engineering, vol. 33, no. 9, pp. 1249–1269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Kim, F. Guilak, and M. A. Haider, “The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading,” Journal of Biomechanical Engineering, vol. 130, no. 6, Article ID 061009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. G. Lin, A. Q. Liu, Y. F. Yu et al., “Cell compressibility studies utilizing noncontact hydrostatic pressure measurements on single living cells in a microchamber,” Applied Physics Letters, vol. 92, no. 23, Article ID 233901, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Dassault Systemes Simulia Corp. Abaqus User's Manual, v. 6.8.1. Providence, RI, USA, 2008.
  25. J. Yan and J. S. Strenkowski, “A finite element analysis of orthogonal rubber cutting,” Journal of Materials Processing Technology, vol. 174, no. 1–3, pp. 102–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Julkunen, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading,” Medical and Biological Engineering and Computing, vol. 47, no. 12, pp. 1281–1290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Haider and F. Guilak, “An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem,” Journal of Biomechanical Engineering, vol. 124, no. 5, pp. 586–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Banabic, M. Bambach, M. Cannamela, M. Azaouzi, G. Hirt, and J. L. Batoz, “Computer-aided tool path optimization for single point incremental sheet forming,” in Advanced Methods in Material Forming, p. 362, 2007. View at Google Scholar
  29. A. J. Maniotis, C. S. Chen, and D. E. Ingber, “Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 3, pp. 849–854, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. G. T. Charras, P. P. Lehenkari, and M. A. Horton, “Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions,” Ultramicroscopy, vol. 86, no. 1-2, pp. 85–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, “A fibril-network-reinforced biphasic model of cartilage in unconfined compression,” Journal of Biomechanical Engineering, vol. 121, no. 3, pp. 340–347, 1999. View at Google Scholar · View at Scopus
  32. R. Krishnan, S. Park, F. Eckstein, and G. A. Ateshian, “Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress,” Journal of Biomechanical Engineering, vol. 125, no. 5, pp. 569–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. V. C. Mow, S. C. Kuei, W. M. Lai, and C. G. Armstrong, “Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments,” Journal of Biomechanical Engineering, vol. 102, no. 1, pp. 73–84, 1980. View at Google Scholar · View at Scopus
  34. Y. Liu, A. E. Kerdok, and R. D. Howe, “A nonlinear finite element model of soft tissue indentation,” in Proceedings of the Medical Simulation:International Symposium (ISMS '04), pp. 67–76, 2004.
  35. T. P. Prevost, A. Balakrishnan, S. Suresh, and S. Socrate, “Biomechanics of brain tissue,” Acta Biomaterialia, vol. 7, no. 1, pp. 83–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Balakrishnan and S. Socrate, “Material property differentiation in indentation testing using secondary sensors,” Experimental Mechanics, vol. 48, no. 4, pp. 549–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. T. Charras, T. J. Mitchison, and L. Mahadevan, “Animal cell hydraulics,” Journal of Cell Science, vol. 122, no. 18, pp. 3233–3241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Abusara, R. Seerattan, A. Leumann, R. Thompson, and W. Herzog, “A novel method for determining articular cartilage chondrocyte mechanics in vivo,” Journal of Biomechanics, vol. 44, no. 5, pp. 930–934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. M. Darling, M. Topel, S. Zauscher, T. P. Vail, and F. Guilak, “Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes,” Journal of Biomechanics, vol. 41, no. 2, pp. 454–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Dieluweit, A. Csiszár, W. Rubner, J. Fleischhauer, S. Houben, and R. Merkel, “Mechanical properties of bare and protein-coated giant unilamellar phospholipid vesicles. A comparative study of micropipet aspiration and atomic force microscopy,” Langmuir, vol. 26, no. 13, pp. 11041–11049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. T. J. Dennerll, H. C. Joshi, V. L. Steel, R. E. Buxbaum, and S. R. Heidemann, “Tension and compression in the cytoskeleton of PC-12 neurites II: quantitative measurements,” Journal of Cell Biology, vol. 107, no. 2, pp. 665–674, 1988. View at Google Scholar · View at Scopus
  42. N. Wang, K. Naruse, D. Stamenović et al., “Mechanical behavior in living cells consistent with the tensegrity model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7765–7770, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Stamenović, N. Wang, and D. E. Ingber, “Tensegrity architecture and the mammalian cell cytoskeleton,” in Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano, pp. 321–338, 2007. View at Publisher · View at Google Scholar