Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 198145, 9 pages
http://dx.doi.org/10.1155/2012/198145
Research Article

Study of Tumor Growth under Hyperthermia Condition

1School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Received 2 May 2012; Revised 22 July 2012; Accepted 23 July 2012

Academic Editor: Scott Penfold

Copyright © 2012 Qing Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Abe, R. Abe, K. Enomoto et al., “Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials,” Lancet, vol. 366, no. 9503, pp. 2087–2106, 2005. View at Google Scholar
  3. B. Fisher, N. Gunduz, and E. A. Saffer, “Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases,” Cancer Research, vol. 43, no. 4, pp. 1488–1492, 1983. View at Google Scholar · View at Scopus
  4. K. Camphausen, M. A. Moses, W. D. Beecken, M. K. Khan, J. Folkman, and M. S. O'Reilly, “Radiation therapy to a primary tumor accelerates metastatic growth in mice,” Cancer Research, vol. 61, no. 5, pp. 2207–2211, 2001. View at Google Scholar · View at Scopus
  5. N. L. Komarova, “Mathematical modeling of tumorigenesis: mission possible,” Current Opinion in Oncology, vol. 17, no. 1, pp. 39–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. W. Secomb, D. A. Beard, J. C. Frisbee, N. P. Smith, and A. R. Pries, “The role of theoretical modeling in microcirculation research,” Microcirculation, vol. 15, no. 8, pp. 693–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Roose, S. J. Chapman, and P. K. Maini, “Mathematical models of avascular tumor growth,” SIAM Review, vol. 49, no. 2, pp. 179–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. K. Laird, “Dynamics of tumor growth,” British journal of cancer, vol. 13, pp. 490–502, 1964. View at Google Scholar · View at Scopus
  9. R. C. Hu and X. G. Ruan, “A simple cellular automaton model for tumor-immunity system,” in Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, vol. 1-2, pp. 1031–1035, 2003.
  10. H. P. Greenspan, “Models for growth of a solid tumor by diffusion,” Applied Mathematics, vol. 51, no. 4, pp. 317–340, 1972. View at Google Scholar
  11. A. C. Burton, “Rate of growth of solid tumours as a problem of diffusion,” Growth, Development and Aging, vol. 30, no. 2, pp. 157–176, 1966. View at Google Scholar · View at Scopus
  12. Y. Kim and A. Friedman, “Interaction of tumor with its micro-environment: a mathematical model,” Bulletin of Mathematical Biology, vol. 72, no. 5, pp. 1029–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Byrne and M. A. Chaplain, “Growth of nonnecrotic tumors in the presence and absence of inhibitors,” Mathematical Biosciences, vol. 130, no. 2, pp. 151–181, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion,” Mathematical Medicine and Biology, vol. 22, no. 2, pp. 163–186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Preziosi and A. Tosin, “Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications,” Journal of Mathematical Biology, vol. 58, no. 4-5, pp. 625–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. A. Anderson and M. A. J. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bulletin of Mathematical Biology, vol. 60, no. 5, pp. 857–899, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini, and J. Lowengrub, “Multiscale modelling and nonlinear simulation of vascular tumour growth,” Journal of Mathematical Biology, vol. 58, no. 4-5, pp. 765–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Adam, “Mathematical models of prevascular spheroid development and catastrophe-theoretic description of rapid metastatic growth/tumor remission,” Invasion and Metastasis, vol. 16, no. 4-5, pp. 247–267, 1996. View at Google Scholar · View at Scopus
  19. A. M. Stein, T. Demuth, D. Mobley, M. Berens, and L. M. Sander, “A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment,” Biophysical Journal, vol. 92, no. 1, pp. 356–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Grecu, A. S. Carstea, A. T. Grecu et al., “Mathematical modelling of tumor growth,” Romanian Reports in Physics, vol. 59, no. 2, pp. 447–455, 2007. View at Google Scholar
  21. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, and J. P. Freyer, “A multiscale model for avascular tumor growth,” Biophysical Journal, vol. 89, no. 6, pp. 3884–3894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Sherratt and M. A. J. Chaplain, “A new mathematical model for avascular tumour growth,” Journal of Mathematical Biology, vol. 43, no. 4, pp. 291–312, 2001. View at Google Scholar · View at Scopus
  23. J. P. Ward and J. R. King, “Mathematical modelling of avascular-tumour growth,” IMA Journal of Mathemathics Applied in Medicine and Biology, vol. 14, no. 1, pp. 39–69, 1997. View at Google Scholar · View at Scopus
  24. J. P. Ward and J. R. King, “Mathematical modelling of avascular-tumour growth II: modelling growth saturation,” IMA Journal of Mathemathics Applied in Medicine and Biology, vol. 16, no. 2, pp. 171–211, 1999. View at Google Scholar · View at Scopus
  25. J. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, “Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids,” Cell Proliferation, vol. 25, no. 1, pp. 1–22, 1992. View at Google Scholar · View at Scopus
  26. M. A. J. Chaplain and B. D. Sleeman, “A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions,” Mathematical Biosciences, vol. 111, no. 2, pp. 169–215, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. J. Chaplain, “Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development,” Mathematical and Computer Modelling, vol. 23, no. 6, pp. 47–87, 1996. View at Google Scholar · View at Scopus
  28. J. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, “Glucose diffusivity in multicellular tumor spheroids,” Cancer Research, vol. 48, no. 14, pp. 3905–3909, 1988. View at Google Scholar · View at Scopus
  29. R. Venkatasubramanian, M. A. Henson, and N. S. Forbes, “Incorporating energy metabolism into a growth model of multicellular tumor spheroids,” Journal of Theoretical Biology, vol. 242, no. 2, pp. 440–453, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Waruburg, “On the origin of cancer cells,” Science, vol. 123, pp. 309–314, 1956. View at Google Scholar
  31. O. Waruburg, The Prime Cause and Prevention of Cancer, Konrad Triltsch, Würzburg, Germany, 1969.
  32. M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. V. Dang and G. L. Semenza, “Oncogenic alterations of metabolism,” Trends in Biochemical Sciences, vol. 24, no. 2, pp. 68–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. L. M. Postovit, M. A. Adams, G. E. Lash, J. P. Heaton, and C. H. Graham, “Oxygen-mediated regulation of tumor cell invasiveness—involvement of a nitric oxide signaling pathway,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35730–35737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Bussink, J. H. A. M. Kaanders, and A. J. Van Der Kogel, “Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers,” Radiotherapy and Oncology, vol. 67, no. 1, pp. 3–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Brahimi-Horn and J. Pouysségur, “Oxygen, a source of life and stress,” FEBS Letters, vol. 581, no. 19, pp. 3582–3591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism: warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. B. S. Peskin and M. J. Carter, “Chronic cellular hypoxia as the prime cause of cancer: what is the de-oxygenating role of adulterated and improper ratios of polyunsaturated fatty acids when incorporated into cell membranes?” Medical Hypotheses, vol. 70, no. 2, pp. 298–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, and E. Saavedra, “Energy metabolism in tumor cells,” FEBS Journal, vol. 274, no. 6, pp. 1393–1418, 2007. View at Google Scholar · View at Scopus
  41. R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, “The biology of cancer: metabolic reprogramming fuels cell growth and proliferation,” Cell Metabolism, vol. 7, no. 1, pp. 11–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Chen, R. Cairns, I. Papandreou, A. Koong, and N. C. Denko, “Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect,” PLoS One, vol. 4, no. 9, Article ID e7033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. P. R. Stauffer and S. N. Goldberg, “Introduction: thermal ablation therapy,” International Journal of Hyperthermia, vol. 20, no. 7, pp. 671–677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Chicheł, J. Skowronek, M. Kubaszewska, and M. Kanikowski, “Hyperthermia-Description of a method and a review of clinical applications,” Reports of Practical Oncology and Radiotherapy, vol. 12, no. 5, pp. 267–275, 2007. View at Google Scholar · View at Scopus
  45. J. R. Oleson, M. W. Dewhirst, J. M. Harrelson, K. A. Leopold, T. V. Samulski, and C. Y. Tso, “Tumor temperature distributions predict hyperthermia effect,” International Journal of Radiation Oncology Biology Physics, vol. 16, no. 3, pp. 559–570, 1989. View at Google Scholar · View at Scopus
  46. J. R. Lepock, “Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage,” International Journal of Hyperthermia, vol. 19, no. 3, pp. 252–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Na, C. Chao, Z. Ai-li et al., “Thermal environmental effect on breast tumor growth,” Journal of Shanghai Jiaotong University, vol. 27, no. 5, pp. 501–505, 2009. View at Google Scholar
  48. J. L. R. Roti, H. H. Kampinga, R. S. Malyapa et al., “Nuclear matrix as a target for hyperthermic killing of cancer cells,” Cell Stress and Chaperones, vol. 3, no. 4, pp. 245–255, 1998. View at Google Scholar
  49. J. Dong, P. Liu, and L. X. Xu, “Immunologic response induced by synergistic effect of alternating cooling and heating of breast cancer,” International Journal of Hyperthermia, vol. 25, no. 1, pp. 25–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. C. W. Song, “Effect of local hyperthermia on blood flow and microenvironment: a review,” Cancer Research, vol. 44, no. 10, supplement, pp. S4721–S4730, 1984. View at Google Scholar · View at Scopus
  51. C. W. Song, A. Lokshina, and J. G. Rhee, “Implication of blood flow in hyperthermic treatment of tumors,” IEEE Transactions on Biomedical Engineering, vol. 31, no. 1, pp. 9–16, 1984. View at Google Scholar · View at Scopus
  52. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review,” Journal of Controlled Release, vol. 65, no. 1-2, pp. 271–284, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. D. T. Connolly, D. M. Heuvelman, R. Nelson et al., “Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis,” Journal of Clinical Investigation, vol. 84, no. 5, pp. 1470–1478, 1989. View at Google Scholar · View at Scopus
  54. Y. Shen, A. Zhang, and L. X. Xu, “Mechanical study on tumor microvessel damage induced by alternate cooling and heating treatment,” in Proceedings of the 11th ASME Summer Bioengineering Conference (SBC'09), part A and B, pp. 593–594, June 2009. View at Scopus
  55. J. P. Freyer and R. M. Sutherland, “Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply,” Cancer Research, vol. 46, no. 7, pp. 3504–3512, 1986. View at Google Scholar · View at Scopus