Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 219080, 5 pages
http://dx.doi.org/10.1155/2012/219080
Review Article

Linear and Nonlinear Heart Rate Variability Indexes in Clinical Practice

Department of Emergency Medicine and Intensive Care, Catholic University of the Sacred Heart, 00168 Rome, Italy

Received 1 September 2011; Revised 9 November 2011; Accepted 11 November 2011

Academic Editor: Sreenivasan R. Nadar

Copyright © 2012 Buccelletti Francesco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Gallagher and T. Appenzeller, “Beyond reductionism,” Science, vol. 284, no. 5411, p. 79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. A. L. Goldberger, “Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease,” Perspectives in Biology and Medicine, vol. 40, no. 4, pp. 543–561, 1997. View at Google Scholar · View at Scopus
  3. D. E. Vaillancourt and K. M. Newell, “Changing complexity in human behavior and physiology through aging and disease,” Neurobiology of Aging, vol. 23, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. L. Que, C. M. Kenyon, R. Olivenstein, P. T. Macklem, and G. N. Maksym, “Homeokinesis and short-term variability of human airway caliber,” Journal of Applied Physiology, vol. 91, no. 3, pp. 1131–1141, 2001. View at Google Scholar · View at Scopus
  5. A. J. Seely and P. T. Macklem, “Complex systems and the technology of variability analysis,” Critical Care, vol. 8, no. 6, pp. R367–R384, 2004. View at Google Scholar · View at Scopus
  6. A. J. E. Seely and N. V. Christou, “Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems,” Critical Care Medicine, vol. 28, no. 7, pp. 2193–2200, 2000. View at Google Scholar · View at Scopus
  7. M. J. Cohen, A. D. Grossman, D. Morabito, M. M. Knudson, A. J. Butte, and G. T. Manley, “Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis,” Critical Care, vol. 14, no. 1, article R10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Pikkujämsä, T. H. Mäkikallio, L. B. Sourander et al., “Cardiac interbeat interval dynamics from childhood to senescence: comparison of conventional and new measures based on fractals and chaos theory,” Circulation, vol. 100, no. 4, pp. 393–399, 1999. View at Google Scholar · View at Scopus
  9. F. Buccelletti, E. Gilardi, E. Scaini et al., “Heart rate variability and myocardial infarction: systematic literature review and metanalysis,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 4, pp. 299–307, 2009. View at Google Scholar · View at Scopus
  10. M. Malik, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996. View at Google Scholar
  11. J. M. Tapanainen, P. E. B. Thomsen, L. Køber et al., “Fractal analysis of heart rate variability and mortality after an acute myocardial infarction,” American Journal of Cardiology, vol. 90, no. 4, pp. 347–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Gisiger, “Scale invariance in biology: coincidence or footprint of a universal mechanism?” Biological Reviews of the Cambridge Philosophical Society, vol. 76, no. 2, pp. 161–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, NY, USA, 1983.
  14. S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2297–2301, 1991. View at Google Scholar · View at Scopus
  15. C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos, vol. 5, no. 1, pp. 82–87, 1995. View at Google Scholar · View at Scopus
  16. H. V. Huikuri and T. H. Mäkikallio, “Heart rate variability in ischemic heart disease,” Autonomic Neuroscience, vol. 90, no. 1-2, pp. 95–101, 2001. View at Google Scholar
  17. N. N. Win, H. Fukayama, H. Kohase, and M. Umino, “The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability,” Anesthesia and Analgesia, vol. 101, no. 1, pp. 97–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kanaya, N. Hirata, S. Kurosawa, M. Nakayama, and A. Namiki, “Differential effects of propofol and sevoflurane on heart rate variability,” Anesthesiology, vol. 98, no. 1, pp. 34–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Sroka, C. J. Peimann, and H. Seevers, “Heart rate variability in myocardial ischemia during daily life,” Journal of Electrocardiology, vol. 30, no. 1, pp. 45–56, 1997. View at Publisher · View at Google Scholar · View at Scopus