Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 363564, 13 pages
http://dx.doi.org/10.1155/2012/363564
Research Article

The HYP-RT Hypoxic Tumour Radiotherapy Algorithm and Accelerated Repopulation Dose per Fraction Study

1School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
2Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
3Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia

Received 16 February 2012; Accepted 11 April 2012

Academic Editor: Loredana Marcu

Copyright © 2012 W. M. Harriss-Phillips et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Brizel, R. K. Dodge, R. W. Clough, and M. W. Dewhirst, “Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome,” Radiotherapy and Oncology, vol. 53, no. 2, pp. 113–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Nordsmark and J. Overgaard, “Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer,” Acta Oncologica, vol. 43, no. 4, pp. 396–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Stadler, A. Becker, H. J. Feldmann et al., “Influence of the hypoxic subvolume on the survival of patients with head and neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 44, no. 4, pp. 749–754, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nordsmark, S. M. Bentzen, V. Rudat et al., “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiotherapy and Oncology, vol. 77, no. 1, pp. 18–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Adam, E. C. Gabalski, D. A. Bloch et al., “Tissue oxygen distribution in head and neck cancer patients,” Head & Neck, vol. 21, no. 2, pp. 146–53, 1999. View at Google Scholar
  6. C. J. Conti, “Vascular endothelial growth factor: regulation in the mouse skin carcinogenesis model and use in antiangiogenesis cancer therapy,” Oncologist, vol. 7, supplement 3, pp. 4–11, 2002. View at Google Scholar · View at Scopus
  7. J. A. Stanley, W. U. Shipley, and G. G. Steel, “Influence of tumour size on hypoxic fraction and therapeutic sensitivity of Lewis lung tumour,” British Journal of Cancer, vol. 36, no. 1, pp. 105–113, 1977. View at Google Scholar · View at Scopus
  8. H. R. Whithers, J. M. G. Taylor, and B. Maciejewski, “The hazard of accelerated tumor clonogen repopulation during radiotherapy,” Acta Oncologica, vol. 27, no. 2, pp. 131–146, 1988. View at Google Scholar · View at Scopus
  9. D. J. Brenner, “Accelerated repopulation during radiotherapy: quantitative evidence for delayed onset,” Radiation Oncology Investigations, vol. 1, no. 3, pp. 167–172, 1993. View at Google Scholar
  10. B. Maciejewski, H. R. Withers, J. M. G. Taylor, and A. Hliniak, “Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation,” International Journal of Radiation Oncology Biology Physics, vol. 16, no. 3, pp. 831–843, 1989. View at Google Scholar · View at Scopus
  11. L. J. Peters and H. R. Withers, “Applying radiobiological principles to combined modality treatment of head and neck cancer—the time factor,” International Journal of Radiation Oncology Biology Physics, vol. 39, no. 4, pp. 831–836, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. K. R. Trott, “The mechanisms of acceleration of repopulation in squamous epithelia during daily irradiation,” Acta Oncologica, vol. 38, no. 2, pp. 153–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. Donaghey, “CELLSIM and CELLGROW: tools for cell kinetic modeling,” ISA Transactions, vol. 22, no. 4, pp. 21–24, 1983. View at Google Scholar · View at Scopus
  14. W. Duchting, T. Ginsberg, and W. Ulmer, “Modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue,” Stem Cells, vol. 13, supplement 1, pp. 301–306, 1995. View at Google Scholar · View at Scopus
  15. W. Duchting, W. Ulmer, R. Lehrig, T. Ginsberg, and E. Dedeleit, “Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy,” Strahlentherapie und Onkologie, vol. 168, no. 6, pp. 354–360, 1992. View at Google Scholar · View at Scopus
  16. W. Duechting and T. Vogelsaenger, “Three-dimensional pattern generation applied to spheroidal tumor growth in a nutrient medium,” International Journal of Bio-Medical Computing, vol. 12, no. 5, pp. 377–392, 1981. View at Google Scholar · View at Scopus
  17. W. Duchting and Vogelsaenger Th., “Recent progress in modelling and simulation of three-dimensional tumor growth and treatment,” BioSystems, vol. 18, no. 1, pp. 79–91, 1985. View at Google Scholar · View at Scopus
  18. K. Borkenstein, S. Levegrün, and P. Peschke, “Modeling and computer simulations of tumor growth and tumor response to radiotherapy,” Radiation Research, vol. 162, no. 1, pp. 71–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. D. D. Dionysiou, G. S. Stamatakos, N. K. Uzunoglu, K. S. Nikita, and A. Marioli, “A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation,” Journal of Theoretical Biology, vol. 230, no. 1, pp. 1–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Harting, P. Peschke, K. Borkenstein, and C. P. Karger, “Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation,” Physics in Medicine and Biology, vol. 52, no. 16, pp. 4775–4789, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Kocher, H. Treuer, J. Voges, M. Hoevels, V. Sturm, and R. P. Müller, “Computer simulation of cytotoxic and vascular effects of radiosurgery in solid and necrotic brain metastases,” Radiotherapy and Oncology, vol. 54, no. 2, pp. 149–156, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Stamatakos, E. I. Zacharaki, M. I. Makropoulou et al., “Modeling tumor growth and irradiation response in vitro—a combination of high-performance computing and web-based technologies including VRML visualization,” IEEE Transactions on Information Technology in Biomedicine, vol. 5, no. 4, pp. 279–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Marcu, T. van Doorn, S. Zavgorodni, and I. Olver, “Growth of a virtual tumour using probabilistic methods of cell generation,” Australasian Physical and Engineering Sciences in Medicine, vol. 25, no. 4, pp. 155–161, 2002. View at Google Scholar · View at Scopus
  24. B. Titz and R. Jeraj, “An imaging-based tumour growth and treatment response model: investigating the effect of tumour oxygenation on radiation therapy response,” Physics in Medicine and Biology, vol. 53, no. 17, pp. 4471–4488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Marcu, T. van Doorn, and I. Olver, “Modelling of post-irradiation accelerated repopulation in squamous cell carcinomas,” Physics in Medicine and Biology, vol. 49, no. 16, pp. 3767–3779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. E. Ljungkvist, J. Bussink, J. H. A. M. Kaanders, N. E. Wiedenmann, R. Vlasman, and A. J. Van Der Kogel, “Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model,” Radiation Research, vol. 165, no. 3, pp. 326–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. W. M. Tuckwell, E. K. Bezak, E. Yeoh, and L. Marcu, “Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer,” Physics in Medicine and Biology, vol. 53, no. 17, pp. 4489–4507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. S. McElwain, R. Callcott, and L. E. Morris, “A model of vascular compression in solid tumours,” Journal of Theoretical Biology, vol. 78, no. 3, pp. 405–415, 1979. View at Google Scholar · View at Scopus
  29. W. M. Harriss-Phillips, E. Bezak, and E. K. Yeoh, “Monte Carlo radiotherapy simulations of accelerated repopulation and reoxygenation for hypoxic head and neck cancer,” British Journal of Radiology, vol. 84, no. 1006, pp. 903–918, 2011. View at Google Scholar
  30. A. Becker, G. Hänsgen, M. Blocking, C. Weigel, C. Lautenschläger, and J. Dunst, “Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue,” International Journal of Radiation Oncology Biology Physics, vol. 42, no. 1, pp. 35–41, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Clavo, J. L. Pérez, L. López et al., “Influence of haemoglobin concentration and peripheral muscle pO2 on tumour oxygenation in advanced head and neck tumours,” Radiotherapy and Oncology, vol. 66, no. 1, pp. 71–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Eschwege, J. Bourhis, T. Girinski et al., “Predictive assays of radiation response in patients with head and neck squamous cell carcinoma: a review of the Institute Gustave Roussy experience,” International Journal of Radiation Oncology Biology Physics, vol. 39, no. 4, pp. 849–853, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. E. C. Gabalski, M. Adam, H. Pinto, J. M. Brown, D. A. Bloch, and D. J. Terris, “Pretreatment and midtreatment measurement of Oxygen tension levels in head and neck cancers,” Laryngoscope, vol. 108, no. 12, pp. 1856–1860, 1998. View at Google Scholar · View at Scopus
  34. V. Rudat, B. Vanselow, P. Wollensack et al., “Repeatability and prognostic impact of the pretreatment pO2 histography in patients with advanced head and neck cancer,” Radiotherapy and Oncology, vol. 57, no. 1, pp. 31–37, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Stadler, H. J. Feldmann, C. Creighton, R. Kau, and M. Molls, “Changes in tumor oxygenation during combined treatment with split- course radiotherapy and chemotherapy in patients with head and neck cancer,” Radiotherapy and Oncology, vol. 48, no. 2, pp. 157–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” Journal of Statistical Software, vol. 5, no. 8, pp. 1–7, 2000. View at Google Scholar · View at Scopus
  37. N. Wright and M. Alison, The Biology of Epithelial Cell Populations, vol. 2, Oxford Univerisy Press and Clarendon Press, Oxford, UK, 1984.
  38. E. Aarnaes, B. Kirkhus, and O. P. F. Clausen, “Mathematical model analysis of mouse epidermal cell kinetics measured by bivariate DNA/anti-bromodeoxyuridine flow cytometry and continuous [3H]-thymidine labelling,” Cell and Tissue Kinetics, vol. 23, no. 5, pp. 409–424, 1990. View at Google Scholar · View at Scopus
  39. C. S. Potten, “Cell cycles in cell hierarchies,” International Journal of Radiation Biology & Related Studies in Physics, vol. 49, no. 2, pp. 257–278, 1986. View at Google Scholar
  40. G. G. Steel, Basic Clinical Radiobiology, Hodder Arnold, UK, 2002.
  41. E. Lartigau, A. Lusinchi, P. Weeger et al., “Variations in tumour oxygen tension (pO2) during accelerated radiotherapy of head and neck garcinoma,” European Journal of Cancer, vol. 34, no. 6, pp. 856–861, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. J. M. Brown, “The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award Lecture,” Cancer Research, vol. 59, no. 23, pp. 5863–5870, 1999. View at Google Scholar · View at Scopus
  43. T. Alarcón, H. M. Byrne, and P. K. Maini, “A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells,” Journal of Theoretical Biology, vol. 229, no. 3, pp. 395–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. S. E. Ljungkvist, J. Bussink, P. F. J. W. Rijken, J. H. A. M. Kaanders, A. J. van der Kogel, and J. Denekamp, “Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 1, pp. 215–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. C. W. S. Chin, A. J. E. Foss, A. Stevens, and J. Lowe, “Differences in the vascular patterns of basal and squamous cell skin carcinomas explain their differences in clinical behaviour,” Journal of Pathology, vol. 200, no. 3, pp. 308–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. R. E. Durand and E. Sham, “The lifetime of hypoxic human tumor cells,” International Journal of Radiation Oncology Biology Physics, vol. 42, no. 4, pp. 711–715, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. A. S. E. Ljungkvist, J. Bussink, J. H. A. M. Kaanders et al., “Hypoxic cell turnover in different solid tumor lines,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 4, pp. 1157–1168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Webster, R. J. Hodgkiss, and G. D. Wilson, “Cell cycle distribution of hypoxia and progression of hypoxic tumour cells in vivo,” British Journal of Cancer, vol. 77, no. 2, pp. 227–234, 1998. View at Google Scholar · View at Scopus
  49. J. P. Kirkpatrick, L. I. Cárdenas-Navia, and M. W. Dewhirst, “Predicting the effect of temporal variations in PO2 on tumor radiosensitivity,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 3, pp. 822–833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Denekamp, A. Daşu, A. Waites, and B. Littbrand, “Hyperfractionation as an effective way of overcoming radioresistance,” International Journal of Radiation Oncology Biology Physics, vol. 42, no. 4, pp. 705–709, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Daşu and J. Denekamp, “Superfractionation as a potential hypoxic cell radiosensitizer: prediction of an optimum dose per fraction,” International Journal of Radiation Oncology Biology Physics, vol. 43, no. 5, pp. 1083–1094, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. R. G. Dale and B. Jones, Radiobioloigcal Modelling in Radiation Oncology, The British Intistitue of Radiology, London, UK, 2007.
  53. K. R. Trott and J. Kummermehr, “Rapid repopulation in radiotherapy: a debate on mechanism. Accelerated repopulation in tumours and normal tissues,” Radiotherapy and Oncology, vol. 22, no. 3, pp. 159–160, 1991. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Kummermehr, W. Dörr, and K. R. Trott, “Kinetics of accelerated repopulation in normal and malignant squamous epithelia during fractionated radiotherapy,” BJR Supplement, vol. 24, pp. 193–199, 1992. View at Google Scholar · View at Scopus
  55. C. H. J. Terhaard, H. B. Kal, and G. J. Hordijk, “Why to start the concomitant boost in accelerated radiotherapy for advanced laryngeal cancer in week 3,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 62–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Stuschke and H. D. Thames, “Hyperfractionated radiotherapy of human tumors: overview of the randomized clinical trials,” International Journal of Radiation Oncology Biology Physics, vol. 37, no. 2, pp. 259–267, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. J. C. Horiot, A. C. Begg, R. Le Fur et al., “Present status of EORTC trials of hyperfractionated and accelerated radiotherapy on head and neck carcinoma,” Recent Results in Cancer Research, vol. 134, pp. 111–119, 1994. View at Google Scholar · View at Scopus
  58. E. J. Hall and A. G. Garcia, Radiobiology for the Radiologist, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2006.
  59. C. S. Potten, “The cell kinetic mechanism for radiation-induced cellular depletion of epithelial tissue based on hierarchical differences in radiosensitivity,” International Journal of Radiation Biology, vol. 40, no. 2, pp. 217–225, 1981. View at Google Scholar · View at Scopus
  60. R. P. Hill, “Tumor progression: potential rolse of unstable genomic changes,” Cancer and Metastasis Reviews, vol. 9, no. 2, pp. 137–147, 1990. View at Google Scholar · View at Scopus
  61. J. A. Royds, S. K. Dower, E. E. Qwarnstrom, and C. E. Lewis, “Response of tumour cells to hypoxia: role of p53 and NFkB,” Journal of Clinical Pathology, vol. 51, no. 2, pp. 55–61, 1998. View at Google Scholar · View at Scopus
  62. E. Aarnaes, O. P. F. Clausen, B. Kirkhus, and P. De Angelis, “Heterogeneity in the mouse epidermal cell cycle analysed by computer simulations,” Cell Proliferation, vol. 26, no. 3, pp. 205–219, 1993. View at Google Scholar · View at Scopus
  63. C. I. Armpilia, R. G. Dale, and B. Jones, “Determination of the optimum dose per fraction in fractionated radiotherapy when there is delayed onset of tumour repopulation during treatment,” British Journal of Radiology, vol. 77, no. 921, pp. 765–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. J. F. Fowler and P. M. Harari, “Confirmation of improved local-regional control with altered fractionation in head and neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 48, no. 1, pp. 3–6, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. A. C. Begg, I. Hofland, and J. Kummermehr, “Tumour cell repopulation during fractionated radiotherapy: correlation between flow cytometric and radiobiological data in three murine tumours,” European Journal of Cancer, vol. 27, no. 5, pp. 537–543, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. J. F. Fowler, “Rapid repopulation in radiotherapy: a debate on mechanism. The phantom of tumor treatment—continually rapid proliferation unmasked,” Radiotherapy and Oncology, vol. 22, no. 3, pp. 156–158, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Dörr, “Three A's of repopulation during fractionated irradiation of squamous epithelia: asymmetry loss, Acceleration of stem-cell divisions and Abortive divisions,” International Journal of Radiation Biology, vol. 72, no. 6, pp. 635–643, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. D. D. Dionysiou, G. S. Stamatakos, D. Gintides, N. Uzunoglu, and K. Kyriaki, “Critical parameters determining standard radiotherapy treatment outcome for glioblastoma multiforme: a computer simulation,” The Open Biomedical Engineering Journal, vol. 2, pp. 43–51, 2008. View at Google Scholar