Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 402341, 11 pages
http://dx.doi.org/10.1155/2012/402341
Research Article

Localizing True Brain Interactions from EEG and MEG Data with Subspace Methods and Modified Beamformers

1IDA Group, Fraunhofer Institute FIRST, Kekuléstraße 7, 12489 Berlin, Germany
2Department of Computer Science, Faculty of Mathematics and Natural Sciences II, Humboldt-Universitaet zu Berlin, Rudower Chausee 25, 10099 Berlin, Germany
3Machine Learning Group, Berlin Institute of Technology, Franklinstr 28/29, 10587 Berlin, Germany
4NIRx Medizintechnik GmbH, Baumbachstraße 17, 13189 Berlin, Germany
5Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany

Received 21 November 2011; Revised 17 February 2012; Accepted 10 May 2012

Academic Editor: Ralph G. Andrzejak

Copyright © 2012 Forooz Shahbazi Avarvand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. J. Miller, K. E. Weaver, and J. G. Ojemann, “Direct electrophysiological measurement of human default network areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12174–12177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Fries, “Neuronal gamma-band synchronization as a fundamental process in cortical computation,” Annual Review of Neuroscience, vol. 32, pp. 209–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Fries, “A mechanism for cognitive dynamics: neuronal communication through neuronal coherence,” Trends in Cognitive Sciences, vol. 9, no. 10, pp. 474–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: oscillations and synchrony in top-down processing,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 704–716, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Singer, “Neuronal synchrony: a versatile code for the definition of relations?” Neuron, vol. 24, no. 1, pp. 49–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Brookes, J. R. Hale, J. M. Zumer et al., “Measuring functional connectivity using MEG: methodology and comparison with fcMRI,” NeuroImage, vol. 56, no. 3, pp. 1082–1104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Astolfi, F. Cincotti, D. Mattia et al., “Comparison of different cortical connectivity estimators for high-resolution EEG recordings,” Human Brain Mapping, vol. 28, no. 2, pp. 143–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Bressler and A. K. Seth, “Wiener-Granger causality: a well established methodology,” NeuroImage, vol. 58, no. 2, pp. 323–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J.-P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, “Measuring phase synchrony in brain signals,” Human Brain Mapping, vol. 8, no. 4, pp. 194–208, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. P. L. Nunez, R. B. Silberstein, Z. Shi et al., “EEG coherency II: experimental comparisons of multiple measures,” Clinical Neurophysiology, vol. 110, no. 3, pp. 469–486, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. B. Hui, D. Pantazis, S. L. Bressler, and R. M. Leahy, “Identifying true cortical interactions in MEG using the nulling beamformer,” NeuroImage, vol. 49, no. 4, pp. 3161–3174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. González, S. Mañas, L. de Vera et al., “Assessment of electroencephalographic functional connectivity in term and preterm neonates,” Clinical Neurophysiology, vol. 122, no. 4, pp. 696–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Gómez-Herrero, M. Atienza, K. Egiazarian, and J. L. Cantero, “Measuring directional coupling between EEG sources,” NeuroImage, vol. 43, no. 3, pp. 497–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources,” Human Brain Mapping, vol. 28, no. 11, pp. 1178–1193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Nolte, A. Ziehe, V. V. Nikulin et al., “Robustly estimating the flow direction of information in complex physical systems,” Physical Review Letters, vol. 100, no. 23, Article ID 234101, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Marzetti, C. Del Gratta, and G. Nolte, “Understanding brain connectivity from EEG data by identifying systems composed of interacting sources,” NeuroImage, vol. 42, no. 1, pp. 87–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Schoffelen and J. Gross, “Source connectivity analysis with MEG and EEG,” Human Brain Mapping, vol. 30, no. 6, pp. 1857–1865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Sekihara, J. P. Owen, S. Trisno, and S. S. Nagarajan, “Removal of spurious coherence in MEG source-space coherence analysis,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 11, Article ID 5976430, pp. 3121–3129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Identifying true brain interaction from EEG data using the imaginary part of coherency,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. G. Guggisberg, S. M. Honma, S. S. Dalal et al., “Mapping functional connectivity in patients with brain lesions,” Annals of Neurology, vol. 63, no. 2, pp. 193–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Martino, S. M. Honma, A. M. Findlay et al., “Resting functional connectivity in patients with brain tumors in eloquent areas,” Annals of Neurology, vol. 69, no. 3, pp. 521–532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ewald, L. Marzetti, F. Zappasodi, F. C. Meinecke, and G. Nolte, “Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space,” NeuroImage, vol. 60, no. 1, pp. 476–488, 2011. View at Google Scholar
  24. G. Nolte, F. C. Meinecke, A. Ziehe, and K. R. Müller, “Identifying interactions in mixed and noisy complex systems,” Physical Review E, vol. 73, no. 5, Article ID 051913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986. View at Google Scholar · View at Scopus
  26. J. C. Mosher, P. S. Lewis, and R. M. Leahy, “Multiple dipole modeling and localization from spatio-temporal MEG data,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 6, pp. 541–557, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Mosher and R. M. Leahy, “Source localization using recursively applied and projected (RAP) MUSIC,” IEEE Transactions on Signal Processing, vol. 47, no. 2, pp. 332–340, 1999. View at Google Scholar · View at Scopus
  28. K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, “Application of an MEG eigenspace beamformer to reconstructing spatio-temporal activities of neural sources,” Human Brain Mapping, vol. 15, no. 4, pp. 199–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 823–831, 1985. View at Google Scholar · View at Scopus
  30. H. W. Chen and J. W. Zhao, “Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources,” Signal Processing, vol. 85, no. 4, pp. 837–847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Oh and C. K. Un, “Improved MUSIC algorithm for high-resolution array processing,” Electronics Letters, vol. 25, no. 22, pp. 1523–1525, 1989. View at Google Scholar · View at Scopus
  32. P. Handel, P. Stoica, and A. Nehorai, “Improved sequential MUSIC,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 4, pp. 1230–1239, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Bouleux and R. Boyer, “Zero-forcing based sequential MUSIC algorithm,” in Proceedings of 32nd IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '07), pp. III1017–III1020, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. G. Stinstra and M. J. Peters, “The volume conductor may act as a temporal filter on the ECG and EEG,” Medical and Biological Engineering and Computing, vol. 36, no. 6, pp. 711–716, 1998. View at Google Scholar · View at Scopus
  35. B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 867–880, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. S. S. Dalal, K. Sekihara, and S. S. Nagarajan, “Modified beamformers for coherent source region suppression,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 7, pp. 1357–1363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Nolte and G. Dassios, “Analytic expansion of the EEG lead field for realistic volume conductors,” Physics in Medicine and Biology, vol. 50, no. 16, pp. 3807–3823, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Blankertz, G. Dornhege, C. Schäfer et al., “Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 127–131, 2003. View at Publisher · View at Google Scholar · View at Scopus