Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 451516, 10 pages
http://dx.doi.org/10.1155/2012/451516
Research Article

A Signal-Processing-Based Approach to Time-Varying Graph Analysis for Dynamic Brain Network Identification

1Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
2Department of Psychology, Florida State University, Tallahassee, FL 32306, USA

Received 30 March 2012; Revised 3 July 2012; Accepted 10 July 2012

Academic Editor: Tianzi Jiang

Copyright © 2012 Ali Yener Mutlu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, “Organization, development and function of complex brain networks,” Trends in Cognitive Sciences, vol. 8, no. 9, pp. 418–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 186–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, “An investigation of functional and anatomical connectivity using magnetic resonance imaging,” NeuroImage, vol. 16, no. 1, pp. 241–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Gong, Y. He, L. Concha et al., “Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography,” Cerebral Cortex, vol. 19, no. 3, pp. 524–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Friston, “Functional and effective connectivity: a review,” Brain Connectivity, vol. 1, no. 1, pp. 13–36, 2011. View at Google Scholar
  6. P. A. Valdes-Sosa, A. Roebroeck, J. Daunizeau, and K. Friston, “Effective connectivity: influence, causality and biophysical modeling,” NeuroImage, vol. 58, no. 2, pp. 339–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Human Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994. View at Google Scholar · View at Scopus
  8. C. J. Stam, “Nonlinear dynamical analysis of EEG and MEG: review of an emerging field,” Clinical Neurophysiology, vol. 116, no. 10, pp. 2266–2301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Pereda, R. Q. Quiroga, and J. Bhattacharya, “Nonlinear multivariate analysis of neurophysiological signals,” Progress in Neurobiology, vol. 77, no. 1-2, pp. 1–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, “A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs,” Journal of Neuroscience, vol. 26, no. 1, pp. 63–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. S. Bassett and E. Bullmore, “Small-world brain networks,” Neuroscientist, vol. 12, no. 6, pp. 512–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, “Adaptive reconfiguration of fractal small-world human brain functional networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19518–19523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Sporns, C. J. Honey, and R. Kötter, “Identification and classification of hubs in brain networks,” PLoS ONE, vol. 2, no. 10, Article ID e1049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, “Small-world networks and functional connectivity in Alzheimer's disease,” Cerebral Cortex, vol. 17, no. 1, pp. 92–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. J. Stam, W. De Haan, A. Daffertshofer et al., “Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease,” Brain, vol. 132, no. 1, pp. 213–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  17. K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, “Network analysis of intrinsic functional brain connectivity in Alzheimer's disease,” PLoS Computational Biology, vol. 4, no. 6, Article ID e1000100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Stam, M. Breakspear, A. M. Van Cappellen van Walsum, and B. W. Van Dijk, “Nonlinear synchronization in EEG and whole-head MEG recordings of healthy subjects,” Human Brain Mapping, vol. 19, no. 2, pp. 63–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Douw, M. M. Schoonheim, D. Landi et al., “Cognition is related to resting-state small-world network topology: an magnetoencephalographic study,” Neuroscience, vol. 175, pp. 169–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. J. Stam, T. Montez, B. F. Jones et al., “Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease,” Clinical Neurophysiology, vol. 116, no. 3, pp. 708–715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Valencia, J. Martinerie, S. Dupont, and M. Chavez, “Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach,” Physical Review E, vol. 77, no. 5, Article ID 050905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. I. Dimitriadis, N. A. Laskaris, V. Tsirka, M. Vourkas, S. Micheloyannis, and S. Fotopoulos, “Tracking brain dynamics via time-dependent network analysis,” Journal of Neuroscience Methods, vol. 193, no. 1, pp. 145–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. De Vico Fallani, L. Astolfi, F. Cincotti et al., “Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis,” Human Brain Mapping, vol. 28, no. 12, pp. 1334–1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses and interpretations,” NeuroImage, vol. 52, no. 3, pp. 1059–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-varying graphs and dynamic networks,” Ad-hoc, Mobile, and Wireless Networks, vol. 6811, pp. 346–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Basu, A. Bar-Noy, R. Ramanathan, and M. Johnson, “Modeling and analysis of time-varying graphs,” Arxiv preprint arXiv:1012.0260, 2010.
  27. V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora, “Components in time-varying graphs,” Arxiv preprint arXiv:1106.2134, 2011.
  28. P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. P. Onnela, “Community structure in time-dependent, multiscale, and multiplex networks,” Science, vol. 328, no. 5980, pp. 876–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora, “Small-world behavior in time-varying graphs,” Physical Review E, vol. 81, no. 5, Article ID 055101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard, “Time-varying graphs and social network analysis: temporal indicators and metrics,” Arxiv preprint arXiv:1102.0629, 2011.
  31. M. Chavez, M. Valencia, V. Latora, and J. Martinerie, “Complex networks: new trends for the analysis of brain connectivity,” International Journal of Bifurcation and Chaos, vol. 20, no. 6, pp. 1677–1686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Miller, M. Beard, and N. Bliss, “Matched filtering for subgraph detection in dynamic networks,” in Proceedings of the IEEE Statistical Signal Processing Workshop (SSP '11), pp. 509–512, 2011.
  33. K. Xu, M. Kliger, and A. Hero, “A shrinkage approach to tracking dynamic networks,” in Proceedings of the IEEE Statistical Signal Processing Workshop (SSP '11), pp. 517–520, 2011.
  34. C. Cortes, D. Pregibon, and C. Volinsky, “Computational methods for dynamic graphs,” Journal of Computational and Graphical Statistics, vol. 12, no. 4, pp. 950–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Tong, S. Papadimitriout, P. S. Yu, and C. Faloutsos, “Proximity tracking on time-evolving bipartite graphs,” in 8th SIAM International Conference on Data Mining 2008, Applied Mathematics 130, pp. 704–715, usa, April 2008. View at Scopus
  36. E. M. Bernat, W. J. Williams, and W. J. Gehring, “Decomposing ERP time-frequency energy using PCA,” Clinical Neurophysiology, vol. 116, no. 6, pp. 1314–1334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Marroquin, T. Harmony, V. Rodriguez, and P. Valdes, “Exploratory EEG data analysis for psychophysiological experiments,” NeuroImage, vol. 21, no. 3, pp. 991–999, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Aviyente and A. Y. Mutlu, “A time-frequency-based approach to phase and phase synchrony estimation,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3086–3098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Tass, M. G. Rosenblum, J. Weule et al., “Detection of n:m phase locking from noisy data: application to magnetoencephalography,” Physical Review Letters, vol. 81, no. 15, pp. 3291–3294, 1998. View at Google Scholar · View at Scopus
  40. J. P. Lachaux, A. Lutz, D. Rudrauf et al., “Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence,” Neurophysiologie Clinique, vol. 32, no. 3, pp. 157–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Krieg, A. Trébuchon-Da Fonseca, E. Martínez-Montes, P. Marquis, C. Liégeois-Chauvel, and C. G. Bénar, “A comparison of methods for assessing alpha phase resetting in electrophysiology, with application to intracerebral EEG in visual areas,” NeuroImage, vol. 55, no. 1, pp. 67–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining event-related brain dynamics,” Trends in Cognitive Sciences, vol. 8, no. 5, pp. 204–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Martínez-Montes, E. R. Cuspineda-Bravo, W. El-Deredy, J. M. Sánchez-Bornot, A. Lage-Castellanos, and P. A. Valdés-Sosa, “Exploring event-related brain dynamics with tests on complex valued time-frequency representations,” Statistics in Medicine, vol. 27, no. 15, pp. 2922–2947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Rihaczek, “Signal energy distribution in time and frequency,” IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 369–374, 1968. View at Google Scholar
  45. S. Aviyente, E. M. Bernat, S. M. Malone, and W. G. Iacono, “Time-frequency data reduction for event related potentials: combining principal component analysis and matching pursuit,” Eurasip Journal on Advances in Signal Processing, vol. 2010, Article ID 289571, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Aviyente, E. M. Bernat, W. S. Evans, and S. R. Sponheim, “A phase synchrony measure for quantifying dynamic functional integration in the brain,” Human Brain Mapping, vol. 32, no. 1, pp. 80–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Falkenstein, J. Hohnsbein, J. Hoormann, and L. Blanke, “Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks,” Electroencephalography and Clinical Neurophysiology, vol. 78, no. 6, pp. 447–455, 1991. View at Google Scholar · View at Scopus
  48. W. Gehring, B. Goss, M. Coles, D. Meyer, and E. Donchin, “A neural system for error detection and compensation,” Psychological Science, vol. 4, no. 6, pp. 385–390, 1993. View at Google Scholar
  49. J. R. Hall, E. M. Bernat, and C. J. Patrick, “Externalizing psychopathology and the error-related negativity,” Psychological Science, vol. 18, no. 4, pp. 326–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Kayser and C. E. Tenke, “Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks,” Clinical Neurophysiology, vol. 117, no. 2, pp. 348–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Kayser and C. E. Tenke, “Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates,” Clinical Neurophysiology, vol. 117, no. 2, pp. 369–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Luu, P. Luu, and D. M. Tucker, “Regulating action: alternating activation of midline frontal and motor cortical networks,” Clinical Neurophysiology, vol. 112, no. 7, pp. 1295–1306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. L. T. Trujillo and J. J. B. Allen, “Theta EEG dynamics of the error-related negativity,” Clinical Neurophysiology, vol. 118, no. 3, pp. 645–668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Y. Hochman, Z. Eviatar, Z. Breznitz, M. Nevat, and S. Shaul, “Source localization of error negativity: additional source for corrected errors,” NeuroReport, vol. 20, no. 13, pp. 1144–1148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. W. H. R. Miltner, C. H. Braun, and M. G. H. Coles, “Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a 'generic' neural system for error detection,” Journal of Cognitive Neuroscience, vol. 9, no. 6, pp. 788–798, 1997. View at Google Scholar · View at Scopus
  56. S. Dehaene, M. Posner, and D. Tucker, “Localization of a neural system for error detection and compensation,” Psychological Science, vol. 5, no. 5, pp. 303–305, 1994. View at Google Scholar
  57. J. Cavanagh, L. Zambrano-Vazquez, and J. Allen, “Theta lingua franca: a common mid-frontal substrate for action monitoring processes,” Psychophysiology, vol. 49, no. 2, pp. 220–238, 2012. View at Google Scholar
  58. J. F. Cavanagh, M. X. Cohen, and J. J. B. Allen, “Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring,” Journal of Neuroscience, vol. 29, no. 1, pp. 98–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. X. Cohen, “Error-related medial frontal theta activity predicts cingulate-related structural connectivity,” NeuroImage, vol. 55, no. 3, pp. 1373–1383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Leuthold and W. Sommer, “ERP correlates of error processing in spatial S-R compatibility tasks,” Clinical Neurophysiology, vol. 110, no. 2, pp. 342–357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. T. J. M. Overbeek, S. Nieuwenhuis, and K. R. Ridderinkhof, “Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne,” Journal of Psychophysiology, vol. 19, no. 4, pp. 319–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. E. M. Bernat, S. M. Malone, W. J. Williams, C. J. Patrick, and W. G. Iacono, “Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA,” International Journal of Psychophysiology, vol. 64, no. 1, pp. 62–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Demiralp, A. Ademoglu, Y. Istefanopulos, C. Başar-Eroglu, and E. Başar, “Wavelet analysis of oddball P300,” International Journal of Psychophysiology, vol. 39, no. 2-3, pp. 221–227, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. C. S. Gilmore, S. M. Malone, E. M. Bernat, and W. G. Iacono, “Relationship between the P3 event-related potential, its associated time-frequency components, and externalizing psychopathology,” Psychophysiology, vol. 47, no. 1, pp. 123–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. K. A. Jones, B. Porjesz, D. Chorlian et al., “S-transform time-frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism,” Clinical Neurophysiology, vol. 117, no. 10, pp. 2128–2143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave De Peralta, “EEG source imaging,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2195–2222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Herrmann, J. Römmler, A. C. Ehlis, A. Heidrich, and A. J. Fallgatter, “Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe),” Cognitive Brain Research, vol. 20, no. 2, pp. 294–299, 2004. View at Publisher · View at Google Scholar · View at Scopus