Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 451938, 10 pages
http://dx.doi.org/10.1155/2012/451938
Research Article

Enhancing the Signal of Corticomuscular Coherence

1Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
2MEG-Center, University of Tübingen, Otfried-Müller-Straße 47, 72076 Tübingen, Germany
3Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38100 Trento, Italy
4Department of Cognitive and Educational Sciences (DiSCoF), University of Trento, Via delle Regole 101, 38100 Trento, Italy

Received 18 November 2011; Revised 7 February 2012; Accepted 20 February 2012

Academic Editor: Mingzhou Ding

Copyright © 2012 Cristiano Micheli and Christoph Braun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 285–296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Brookes, C. M. Stevenson, G. R. Barnes et al., “Beamformer reconstruction of correlated sources using a modified source model,” NeuroImage, vol. 34, no. 4, pp. 1454–1465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. B. Hui, D. Pantazis, S. L. Bressler, and R. M. Leahy, “Identifying true cortical interactions in MEG using the nulling beamformer,” NeuroImage, vol. 49, no. 4, pp. 3161–3174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Jerbi, J. P. Lachaux, K. N'Diaye et al., “Coherent neural representation of hand speed in humans revealed by MEG imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7676–7681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Sekihara and S. S. Nagarajan, Adaptive Spatial Filters for Electromagnetic Brain Imaging, Springer, Berlin, Germany, 2008.
  6. S. S. Dalal, K. Sekihara, and S. S. Nagarajan, “Modified beamformers for coherent source region suppression,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 7, pp. 1357–1363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Schoffelen, R. Oostenveld, and P. Fries, “Imaging the human motor system's beta-band synchronization during isometric contraction,” NeuroImage, vol. 41, no. 2, pp. 437–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. I. T. Chen, Y. S. Chen, and L. F. Chen, “Beamformer-based spatiotemporal imaging of correlated brain activities,” in 9th IEEE International Conference on Bioinformatics and BioEngineering (BIBE '09), pp. 431–434, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Dalal, A. G. Guggisberg, E. Edwards et al., “Spatial localization of cortical time-frequency dynamics,” in 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBC '07), pp. 4941–4944, August 2007. View at Publisher · View at Google Scholar
  10. M. J. Brookes, C. M. Stevenson, A. Hadgipapas et al., “Beamformer imaging and interference rejection,” in Biomagnetism. Interdisciplinary Research and Exploration, R. Kakigi, K. Yokosawa, and S. Kuriki, Eds., pp. 62–64, Hokkaido University Press, Sapporo, Japan, 2008. View at Google Scholar
  11. A. Hillebrand and G. R. Barnes, “Beamformer Analysis of MEG Data,” International Review of Neurobiology, vol. 68, pp. 149–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. A. Conway, D. M. Halliday, S. F. Farmer et al., “Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man,” Journal of Physiology, vol. 489, no. 3, pp. 917–924, 1995. View at Google Scholar · View at Scopus
  13. T. Mima and M. Hallett, “Corticomuscular coherence: a review,” Journal of Clinical Neurophysiology, vol. 16, no. 6, pp. 501–511, 1999. View at Google Scholar · View at Scopus
  14. J. M. Kilner, S. N. Baker, S. Salenius, R. Hari, and R. N. Lemon, “Human cortical muscle coherence is directly related to specific motor parameters,” Journal of Neuroscience, vol. 20, no. 23, pp. 8838–8845, 2000. View at Google Scholar · View at Scopus
  15. D. M. Halliday, B. A. Conway, S. F. Farmer, and J. R. Rosenberg, “Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans,” Neuroscience Letters, vol. 241, no. 1, pp. 5–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, “Localization of brain electrical activity via linearly constrained minimum variance spatial filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 867–880, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Sekihara, S. S. Nagarajan, D. Poeppel, and A. Marantz, “Performance of an MEG adaptive-beamformer technique in the presence of correlated neural activities: effects on signal intensity and time-course estimates,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 12, pp. 1534–1546, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Gross, J. Kujala, M. Hämäläinen, L. Timmermann, A. Schnitzler, and R. Salmelin, “Dynamic imaging of coherent sources: studying neural interactions in the human brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 694–699, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Congedo, “Subspace projection filters for real-time brain electromagnetic imaging,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1624–1634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rodríguez-Rivera, B. V. Baryshnikov, B. D. Van Veen, and R. T. Wakai, “MEG and EEG source localization in beamspace,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 3, pp. 430–441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP magazine, vol. 5, no. 2, pp. 4–24, 1988. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Computational Intelligence and Neuroscience, vol. 2011, Article ID 156869, 9 pages, 2011. View at Publisher · View at Google Scholar
  23. K. Sekihara, M. Sahani, and S. S. Nagarajan, “Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction,” NeuroImage, vol. 25, no. 4, pp. 1056–1067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Elsevier/Academic Press, Burlington, Mass, USA, 2005.
  25. G. Nolte, “The magnetic lead field theorem in the quasi-static approximation and its use for magnetoenchephalography forward calculation in realistic volume conductors,” Physics in Medicine and Biology, vol. 48, no. 22, pp. 3637–3652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, “Forward field computation with OpenMEEG,” Computational Intelligence and Neuroscience, vol. 2011, Article ID 923703, 13 pages, 2011. View at Publisher · View at Google Scholar
  27. “Tutorial on artifact detection,” http://fieldtrip.fcdonders.nl/tutorial/automatic_artifact_rejection.
  28. A. Delorme, T. Sejnowski, and S. Makeig, “Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis,” NeuroImage, vol. 34, no. 4, pp. 1443–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. O. P. Neto and E. A. Christou, “Rectification of the EMG signal impairs the identification of oscillatory input to the muscle,” Journal of Neurophysiology, vol. 103, no. 2, pp. 1093–1103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. P. Mitra and B. Pesaran, “Analysis of dynamic brain imaging data,” Biophysical Journal, vol. 76, no. 2, pp. 691–708, 1999. View at Google Scholar · View at Scopus
  31. E. Maris and R. Oostenveld, “Nonparametric statistical testing of EEG- and MEG-data,” Journal of Neuroscience Methods, vol. 164, no. 1, pp. 177–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. CTF head coordinates conventions, “CTF systems,” Head Localization, manual number 900-0017-AW02 release 3.2, 93–95, 1993.