Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 504367, 9 pages
http://dx.doi.org/10.1155/2012/504367
Research Article

Computational Fluid Dynamics Analysis of the Effect of Plaques in the Left Coronary Artery

1Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, GPO Box, U1987, Perth, WA 6845, Australia
2Fluid Dynamics Research Group, Department of Mechanical Engineering, Curtin University, Perth, WA 6845, Australia

Received 30 September 2011; Revised 8 November 2011; Accepted 9 November 2011

Academic Editor: Kyehan Rhee

Copyright © 2012 Thanapong Chaichana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Australian Institute of Health and Welfare, “The tenth biennial health report of the Australian Institute of Health and Welfare,” AIHW, Canberra, Australia, 2006.
  2. F. J. Rybicki, S. Melchionna, D. Mitsouras et al., “Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: lattice Boltzmann evaluation of endothelial shear stress,” International Journal of Cardiovascular Imaging, vol. 25, no. 2, pp. 289–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Shanmugavelayudam, D. A. Rubenstein, and W. Yin, “Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions,” Journal of Biomechanical Engineering, vol. 132, no. 6, article 061004, 2010. View at Publisher · View at Google Scholar · View at PubMed
  4. B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: steady state simulations,” Journal of Biomechanics, vol. 37, no. 5, pp. 709–720, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. V. Soulis, T. M. Farmakis, G. D. Giannoglou, and G. E. Louridas, “Wall shear stress in normal left coronary artery tree,” Journal of Biomechanics, vol. 39, no. 4, pp. 742–749, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Chaichana, Z. Sun, and J. Jewkes, “Computation of hemodynamics in the left coronary artery with variable angulations,” Journal of Biomechanics, vol. 44, no. 10, pp. 1869–1878, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. Z. Sun and Y. Cao, “Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease,” European Journal of Radiology, vol. 79, no. 2, pp. e90–e95, 2011. View at Publisher · View at Google Scholar · View at PubMed
  8. Z. Sun, F. J. Dimpudus, J. Nugroho, and J. D. Adipranoto, “CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study,” European Journal of Radiology, vol. 75, no. 1, pp. e112–e119, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. Z. Sun, R. J. Winder, B. E. Kelly, P. K. Ellis, and D. G. Hirst, “CT virtual intravascular endoscopy of abdominal aortic aneurysms treated with suprarenal endovascular stent grafting,” Abdominal Imaging, vol. 28, no. 4, pp. 580–587, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Sun, R. J. Winder, B. E. Kelly, P. K. Ellis, P. T. Kennedy, and D. G. Hirst, “Diagnostic Value of CT Virtual Intravascular Endoscopy in Aortic Stent-Grafting,” Journal of Endovascular Therapy, vol. 11, no. 1, pp. 13–25, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. G. Y. Cho, C. W. Lee, M. K. Hong, J. J. Kim, S. W. Park, and S. J. Park, “Effects of stent design on side branch occlusion after coronary stent placement,” Catheterization and Cardiovascular Interventions, vol. 52, no. 1, pp. 18–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Fuster, “Lewis A. Conner memorial lecture: mechanisms leading to myocardial infarction: insights from studies of vascular biology,” Circulation, vol. 90, no. 4 I, pp. 2126–2146, 1994. View at Google Scholar · View at Scopus
  13. X. He and D. N. Ku, “Flow in T-bifurcations: effect of the sharpness of the flow divider,” Biorheology, vol. 32, no. 4, pp. 447–458, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Sun and T. Chaichana, “Fenestrated stent graft repair of abdominal aortic aneurysm: hemodynamic analysis of the effect of fenestrated stents on the renal arteries,” Korean Journal of Radiology, vol. 11, no. 1, pp. 95–106, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Z. Sun and T. Chaichana, “Investigation of the hemodynamic effect of stent wires on renal arteries in patients with abdominal aortic aneurysms treated with suprarenal stent-grafts,” CardioVascular and Interventional Radiology, vol. 32, no. 4, pp. 647–657, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. T. Frauenfelder, M. Lotfey, T. Boehm, and S. Wildermuth, “Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation,” CardioVascular and Interventional Radiology, vol. 29, no. 4, pp. 613–623, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. W. Nichols and M. O’Rourke, McDonald’s Blood Flow in Arteries, Hodder Arnold, London, UK, 2005.
  18. S. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, Technical Publishing, Poway, Calif, USA, 1997.
  19. E. Wellnhofer, J. Osman, U. Kertzscher, K. Affeld, E. Fleck, and L. Goubergrits, “Flow simulation studies in coronary arteries-Impact of side-branches,” Atherosclerosis, vol. 213, no. 2, pp. 475–481, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. E. Boutsianis, H. Dave, T. Frauenfelder et al., “Computational simulation of intracoronary flow based on real coronary geometry,” European Journal of Cardio-thoracic Surgery, vol. 26, no. 2, pp. 248–256, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. W. Milnor, Hemodynamics, Williams & Wilkins, Baltimore, Md, USA, 1989.
  22. Z. Sun, B. Mwipatayi, T. Chaichana, and C. Ng, “Hemodynamic effect of calcifed plaque on blood flow in carotid artery disease: a preliminary study - Hemodynamic effect of calcified plaque,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE '09), pp. 1–4, June 2009. View at Publisher · View at Google Scholar
  23. A. Borghi, N. B. Wood, R. H. Mohiaddin, and X. Y. Xu, “Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study,” Journal of Fluids and Structures, vol. 24, no. 2, pp. 270–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. W. W. Jeong and K. Rhee, “Effects of surface geometry and non-newtonian viscosity on the flow field in arterial stenoses,” Journal of Mechanical Science and Technology, vol. 23, no. 9, pp. 2424–2433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. D. Ballyk, D. A. Steinman, and C. R. Ethier, “Simulation of non-newtonial blood flow in an end-to-side anastomosis,” Biorheology, vol. 31, no. 5, pp. 565–586, 1994. View at Google Scholar · View at Scopus
  26. L. C. Cheng, J. M. Robertson, and M. E. Clark, “Numerical calculations of plane oscillatory non uniform flow. II. Parametric study of pressure gradient and frequency with square wall obstacles,” Journal of Biomechanics, vol. 6, no. 5, pp. 521–538, 1973. View at Google Scholar · View at Scopus
  27. D. Garcia, L. Kadem, D. Savéry, P. Pibarot, and L. G. Durand, “Analytical modeling of the instantaneous maximal transvalvular pressure gradient in aortic stenosis,” Journal of Biomechanics, vol. 39, no. 16, pp. 3036–3044, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. V. Anderson, G. S. Roubin, and P. P. Leimgruber, “Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty,” Circulation, vol. 73, no. 6, pp. 1223–1230, 1986. View at Google Scholar · View at Scopus
  29. S. H. Han, J. Puma, H. M. Garcia-Garcia et al., “Tissue characterisation of atherosclerotic plaque in coronary artery bifurcations: an intravascular ultrasound radiofrequency data analysis in humans,” EuroIntervention, vol. 6, no. 3, pp. 313–320, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. A. I. Gziut, “Comparative analysis of atherosclerotic plaque distribution in the left main coronary artery and proximal segments of left anterior descending and left circumflex arteries in patients qualified for percutaneous coronary angioplasty,” Annales Academiae Medicae Stetinensis, vol. 52, no. 2, pp. 51–63, 2006. View at Google Scholar · View at Scopus
  31. T. Asakura and T. Karino, “Flow patterns and spatial distributions of atherosclerotic lesions in human coronary arteries,” Circulation Research, vol. 66, no. 4, pp. 1045–1066, 1990. View at Google Scholar · View at Scopus
  32. F. J. H. Gijsen, J. J. Wentzel, A. Thury et al., “A new imaging technique to study 3-D plaque and shear stress distribution in human coronary artery bifurcations in vivo,” Journal of Biomechanics, vol. 40, no. 11, pp. 2349–2357, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. H. W. Sung, P. S. Yu, C. H. Hsu, and J. C. Hsu, “Can cardiac catheterization accurately assess the severity of aortic stenosis? An in vitro pulsatile flow study,” Annals of Biomedical Engineering, vol. 25, no. 5, pp. 896–905, 1997. View at Google Scholar · View at Scopus