Table of Contents Author Guidelines Submit a Manuscript
Retracted

This article has been retracted upon the authors request as it was found to include unreliable interpretation due to insufficient provision of studying materials.

View the original article here.

References

  1. Q. Guan, B. Du, Z. Teng, J. Gillard, and S. Chen, “Bayes clustering and structural support vector machines for segmentation of carotid artery plaques in multicontrast MRI,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 549102, 6 pages, 2012.
Computational and Mathematical Methods in Medicine
Volume 2012 (2012), Article ID 549102, 6 pages
http://dx.doi.org/10.1155/2012/549102
Research Article

Bayes Clustering and Structural Support Vector Machines for Segmentation of Carotid Artery Plaques in Multicontrast MRI

1College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China
2Department of Radiology, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK

Received 6 October 2012; Accepted 19 November 2012

Academic Editor: Carlo Cattani

Copyright © 2012 Qiu Guan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Teng, J. He, A. J. Degnan et al., “Critical mechanical conditions around neovessels in carotid atherosclerotic plaque may promote intraplaque hemorrhage,” Atherosclerosis, vol. 223, no. 2, pp. 321–326, 2012. View at Publisher · View at Google Scholar
  2. Z. Teng, A. J. Degnan, S. Chen, and J. H. Gillard, “Characterization of healing following atherosclerotic carotid plaque rupture in acutely symptomatic patients: an exploratory study using in vivo cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic Resonance, vol. 13, no. 1, article 64, 2011. View at Publisher · View at Google Scholar
  3. S. Y. Chen and Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, pp. 480–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Y. Chen, J. Zhang, H. Zhang et al., “Myocardial motion analysis for determination of tei-index of human heart,” Sensors, vol. 10, no. 12, pp. 11428–11439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Y. Chen, J. Zhang, Q. Guan, and S. Liu, “Detection and amendment of shape distortions based on moment invariants for active shape models,” IET Image Processing, vol. 5, no. 3, pp. 273–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. Trivedi, J. U-King-Im, M. J. Graves et al., “Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques,” European Journal of Vascular and Endovascular Surgery, vol. 28, no. 2, pp. 207–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. I. M. Adame, R. J. van der Geest, B. A. Wasserman, M. A. Mohamed, J. H. C. Reiber, and B. P. F. Lelieveldt, “Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 16, no. 5, pp. 227–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. E. Clarke, V. Beletsky, R. R. Hammond, R. A. Hegele, and B. K. Rutt, “Validation of automatically classifiedmagnetic resonance images for carotid plaque compositional analysis,” Stroke, vol. 37, no. 1, pp. 93–97, 2006. View at Google Scholar
  9. F. Liu, D. Xu, M. S. Ferguson et al., “Automated in vivo segmentation of carotid plaque MRI with morphology-enhanced probability maps,” Magnetic Resonance in Medicine, vol. 55, no. 3, pp. 659–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Karmonik, P. Basto, K. Vickers et al., “Quantitative segmentation of principal carotid atherosclerotic lesion components by feature space analysis based on multicontrast MRI at 1.5 T,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 2, pp. 352–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Vukadinovic, S. Rozie, M. van Gils et al., “Automated versus manual segmentation of atherosclerotic carotid plaque volume and components in CTA: associations with cardiovascular risk factors,” International Journal of Cardiovascular Imaging, vol. 28, no. 4, pp. 877–887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Chen, S. Thiruvenkadam, F. Huang, K. S. Gopinath, and R. W. Brigg, “Simultaneous segmentation and registration for functional MR images,” in Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 747–750, Québec, Canada, 2006.
  13. J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical images: a survey,” IEEE Transactions on Medical Imaging, vol. 22, no. 8, pp. 986–1004, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Sadat, R. A. Weerakkody, D. J. Bowden et al., “Utility of high resolution MR imaging to assess carotid plaque morphology: a comparison of acute symptomatic, recently symptomatic and asymptomatic patients with carotid artery disease,” Atherosclerosis, vol. 207, no. 2, pp. 434–439, 2009. View at Publisher · View at Google Scholar · View at Scopus