Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 790482, 12 pages
http://dx.doi.org/10.1155/2012/790482
Research Article

Modeling Innate Immune Response to Early Mycobacterium Infection

1Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands

Received 15 June 2012; Revised 24 September 2012; Accepted 8 October 2012

Academic Editor: Francesco Pappalardo

Copyright © 2012 Rafael V. Carvalho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Flynn and J. Chan, “Immunology of tuberculosis,” Annual Review of Immunology, vol. 19, pp. 93–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Meijer and H. P. Spaink, “Host-Pathogen interactions made transparent with the zebrafish model,” Current Drug Targets, vol. 12, no. 7, pp. 1000–1017, 2011. View at Google Scholar · View at Scopus
  3. C. L. Cosma, D. R. Sherman, and L. Ramakrishnan, “The secret lives of the pathogenic mycobacteria,” Annual Review of Microbiology, vol. 57, pp. 641–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. D. Meeker and N. S. Trede, “Immunology and zebrafish: spawning new models of human disease,” Developmental and Comparative Immunology, vol. 32, no. 7, pp. 745–757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Davis and L. Ramakrishnan, “The role of the granuloma in expansion and dissemination of early tuberculous infection,” Cell, vol. 136, no. 1, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, P. Herbomel, and L. Ramakrishnan, “Real-time visualization of Mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos,” Immunity, vol. 17, no. 6, pp. 693–702, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Traver, P. Herbomel, E. E. Patton et al., “The Zebrafish as a model organism to study development of the immune system,” Advances in Immunology, vol. 81, pp. 253–330, 2003. View at Google Scholar · View at Scopus
  8. A. H. Meijer, A. M. van der Sar, C. Cunha et al., “Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish,” Developmental and Comparative Immunology, vol. 32, no. 1, pp. 36–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. J. Barnes and D. Chu, Introduction to Modeling for Biosciences, Springer, London, UK, 2010.
  10. F. Pappalardo, M. D. Halling-Brown, N. Rapin et al., “ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization,” Briefings in Bioinformatics, vol. 10, no. 3, pp. 330–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Pappalardo, I. M. Forero, M. Pennisi, A. Palazon, I. Melero, and S. Motta, “SimB16: modeling induced immune system response against B16-melanoma,” PLoS ONE, vol. 6, no. 10, Article ID e26523, 2011. View at Google Scholar
  12. D. Alemani, F. Pappalardo, M. Pennisi, S. Motta, and V. Brusic, “Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition,” Journal of Immunological Methods, vol. 376, no. 1-2, pp. 55–68, 2012. View at Google Scholar
  13. D. E. Kirschner, D. Young, and J. L. Flynn, “Tuberculosis: global approaches to a global disease,” Current Opinion in Biotechnology, vol. 21, no. 4, pp. 524–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Kirschner and S. Marino, “Mycobacterium tuberculosis as viewed through a computer,” Trends in Microbiology, vol. 13, no. 5, pp. 206–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. L. Lin, D. Kirschner, and J. L. Flynn, “Modeling pathogen and host: in vitro, in vivo and in silico models of latent Mycobacterium tuberculosis infection,” Drug Discovery Today: Disease Models, vol. 2, no. 2, pp. 149–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. L. Segovia-Juarez, S. Ganguli, and D. Kirschner, “Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model,” Journal of Theoretical Biology, vol. 231, no. 3, pp. 357–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hardy and P. N. Robillard, “Modeling and simulation of molecular biology systems using petri nets: modeling goals of various approaches,” Journal of Bioinformatics and Computational Biology, vol. 2, no. 4, pp. 595–613, 2004. View at Google Scholar · View at Scopus
  18. D. Tsavachidou and M. N. Liebman, “Modeling and simulation of pathways in menopause,” Journal of the American Medical Informatics Association, vol. 9, no. 5, pp. 461–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Peleg, I. S. Gabashvili, and R. B. Altman, “Qualitative models of molecular function: linking genetic polymorphisms of tRNA to their functional sequelae,” Proceedings of the IEEE, vol. 90, no. 12, pp. 1875–1886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. E. L. Benard, A. M. Van Der Sar, F. Ellett, G. J. Lieschke, H. P. Spaink, and A. H. Meijer, “Infection of zebrafish embryos with intracellular bacterial pathogens,” Journal of Visualized Experiments, no. 61, pp. 1–8, 2012. View at Google Scholar
  21. C. T. Yang, C. J. Cambier, J. M. Davis, C. J. Hall, P. S. Crosier, and L. Ramakrishnan, “Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages,” Cell Host & Microbe, vol. 12, no. 3, pp. 301–312, 2012. View at Google Scholar
  22. N. van der Wel, D. Hava, D. Houben et al., “M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells,” Cell, vol. 129, no. 7, pp. 1287–1298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Sundaramurthy and J. Pieters, “Interactions of pathogenic mycobacteria with host macrophages,” Microbes and Infection, vol. 9, no. 14-15, pp. 1671–1679, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Rosenberger and B. B. Finlay, “Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens,” Nature Reviews Molecular Cell Biology, vol. 4, no. 5, pp. 385–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. M. Stoop, T. Schipper, S. K. Rosendahl Huber et al., “Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component,” Disease Models and Mechanisms, vol. 4, no. 4, pp. 526–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Davis, D. A. Haake, and L. Ramakrishnan, “Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues,” PLoS Neglected Tropical Diseases, vol. 3, no. 6, article e463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Lesley and L. Ramakrishnan, “Insights into early mycobacterial pathogenesis from the zebrafish,” Current Opinion in Microbiology, vol. 11, no. 3, pp. 277–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Cardelli, “Brane calculi interactions of biological membranes,” in Proceedings of the International Conference on Computational Methods in Systems Biology (CMSB '04), vol. 3082, pp. 257–278, May 2004. View at Scopus
  29. A. Regev, W. Silverman, and E. Shapiro, “Representation and simulation of biochemical processes using the pi-calculus process algebra,” Proceedings of the Pacific Symposium on Biocomputing, pp. 459–470, 2001. View at Google Scholar · View at Scopus
  30. V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman, “Petri net representations in metabolic pathways.,” in Proceedings of the International Conference on Intelligent Systems for Molecular Biology (ISMB '93), vol. 1, pp. 328–336, January 1993.
  31. R. V. Carvalho, W. Davids, A. H. Meijer, and F. J. Verbeek, “Spatio-temporal modeling and simulation of mycobacterium pathogenesis using petri nets,” in Bio-Inspired Models of Networks, Information, and Computing Systems, vol. 103 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 236–241, 2012. View at Google Scholar
  32. M. Heiner, D. Gilbert, and R. Donaldson, “Petri nets for systems and synthetic biology,” Formal Methods for Computational Systems Biology, vol. 5016, pp. 215–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Desel and G. Juhás, ““What Is a Petri Net?” Informal answers for the informed reader,” Unifying Petri Nets, vol. 2128, pp. 1–25, 2001. View at Google Scholar
  34. K. Jensen and L. M. Kristensen, Coloured Petri Nets, vol. 254, Springer, Berlin, Germany, 2009.
  35. I. Mura and A. Csikász-Nagy, “Stochastic Petri Net extension of a yeast cell cycle model,” Journal of Theoretical Biology, vol. 254, no. 4, pp. 850–860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Alla and R. David, “Continuous and hybrid Petri nets,” Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 159–188, 1998. View at Google Scholar · View at Scopus
  37. F. Liu and M. Heiner, “Colored Petri nets to model and simulate biological systems,” in Proceedings of the Workshops of the 31st International Conference on Application and Theory of Petri Nets and Other Models of Concurrency (PETRI NETS '10), vol. 827 of CEUR Workshop, pp. 71–85, 2010.
  38. M. Heiner, R. Richter, M. Schwarick, and C. Rohr, “Snoopy-a tool to design and execute graph-based formalisms,” Petri Net Newsletter, vol. 74, pp. 8–22, 2008. View at Google Scholar
  39. D. Gammack, S. Ganguli, S. Marino, J. Segovia-Juarez, and D. E. Kirschner, “Understanding the immune response in tuberculosis using different mathematical models and biological scales,” Multiscale Modeling and Simulation, vol. 3, no. 2, pp. 312–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Marino, J. J. Linderman, and D. E. Kirschner, “A multifaceted approach to modeling the immune response in tuberculosis,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 3, no. 4, pp. 479–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Franzke, Charlie 2.0—A Multi-Threaded Petri Net Analyzer, Brandenburg University of Technology at Cottbus, 2009.
  42. A. E. Nezhinsky, E. Stoop, A. A. Vasylevska, A. van der Sar, and F. J. Vebeek, “Spatial analysis of bacterial infection patterns in Zebrafish,” in Proceedings of the 21th Annual Belgian-Dutch Conference on Machine Learning, pp. 27–32, 2012.