Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 978901, 10 pages
http://dx.doi.org/10.1155/2012/978901
Research Article

The Time Required to Estimate the Case Fatality Ratio of Influenza Using Only the Tip of an Iceberg: Joint Estimation of the Virulence and the Transmission Potential

1Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
3School of Public Health, The University of Hong Kong, Level 6, Core F, Cyberport 3, 100 Cyberport Road, Pokfulam, Hong Kong
4Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
5PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan

Received 19 January 2012; Revised 21 February 2012; Accepted 22 February 2012

Academic Editor: Gerardo Chowell

Copyright © 2012 Keisuke Ejima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ma and P. Van Den Driessche, “Case fatality proportion,” Bulletin of Mathematical Biology, vol. 70, no. 1, pp. 118–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Nishiura, “Case fatality ratio of pandemic influenza,” The Lancet Infectious Diseases, vol. 10, no. 7, pp. 443–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Department of Health & Human Services, “Interim Pre-Pandemic Planning Guidance: Community Strategy for Pandemic Influenza Mitigation in the United States- Early, Targeted, Layered Use of Nonpharmaceutical Interventions,” Centers for Disease Control, Atlanta, Ga, USA, 2007, http://healthvermont.gov/panflu/documents/0207interimguidance.pdf.
  4. M. Lipsitch, S. Riley, S. Cauchemez, A. C. Ghani, and N. M. Ferguson, “Managing and reducing uncertainty in an emerging influenza pandemic,” New England Journal of Medicine, vol. 361, no. 2, pp. 112–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. G. Nicholson, R. G. Webster, and A. J. Hay, Textbook of Influenza, Blackwell Science, Oxford, UK, 1998.
  6. J. Papenburg, M. Baz, M. È. Hamelin et al., “Household transmission of the 2009 pandemic A/H1N1 influenza virus: elevated laboratory-confirmed secondary attack rates and evidence of asymptomatic infections,” Clinical Infectious Diseases, vol. 51, no. 9, pp. 1033–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. J. Cowling, S. Ng, E. S. K. Ma et al., “Protective efficacy of seasonal influenza vaccination against seasonal and pandemic influenza virus infection during 2009 in Hong Kong,” Clinical Infectious Diseases, vol. 51, no. 12, pp. 1370–1379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Presanis, D. De Angelis, A. Hagy et al., “The severity of pandemic H1N1 influenza in the united states, from April to July 2009: a bayesian analysis,” Plos Medicine, vol. 6, no. 12, Article ID 1000207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. T. Wu, A. Ho, E. S.K. Ma et al., “Estimating infection attack rates and severity in real time during an influenza pandemic: analysis of serial cross-sectional serologic surveillance data,” PLoS Medicine, vol. 8, no. 10, Article ID e1001103, 2011. View at Publisher · View at Google Scholar
  10. A. C. Ghani, C. A. Donnelly, D. R. Cox et al., “Methods for estimating the case fatality ratio for a novel, emerging infectious disease,” American Journal of Epidemiology, vol. 162, no. 5, pp. 479–486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. P. Jewell, X. Lei, A. C. Ghani et al., “Non-parametric estimation of the case fatality ratio with competing risks data: an application to severe acute respiratory syndrome (SARS),” Statistics in Medicine, vol. 26, no. 9, pp. 1982–1998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Nishiura, D. Klinkenberg, M. Roberts, and J. A. P. Heesterbeek, “Early epidemiological assessment of the virulence of emerging infectious diseases: a case study of an influenza pandemic,” Plos ONE, vol. 4, no. 8, Article ID e6852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Garske, J. Legrand, C. A. Donnelly et al., “Assessing the severity of the novel influenza A/H1N1 pandemic,” British Medical Journal, vol. 339, article b2840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Nishiura, “The virulence of pandemic influenza A (H1N1) 2009: an epidemiological perspective on the case-fatality ratio,” Expert Review of Respiratory Medicine, vol. 4, no. 3, pp. 329–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. T. Wu, E. S. K. Ma, C. K. Lee et al., “The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong,” Clinical Infectious Diseases, vol. 51, no. 10, pp. 1184–1191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Echevarría-Zuno, J. M. Mejía-Aranguré, A. J. Mar-Obeso et al., “Infection and death from influenza A H1N1 virus in Mexico: a retrospective analysis,” The Lancet, vol. 374, no. 9707, pp. 2072–2079, 2009. View at Publisher · View at Google Scholar
  17. E. McBryde, I. Bergeri, C. van Gemert et al., “Early transmission characteristics of influenza A(H1N1)v in australia: victorian state, 16 May–3 June 2009,” Euro Surveillance, vol. 14, no. 42, p. 19363, 2009. View at Google Scholar · View at Scopus
  18. C. Fraser, C. A. Donnelly, S. Cauchemez et al., “Pandemic potential of a strain of influenza A (H1N1): early findings,” Science, vol. 324, no. 5934, pp. 1557–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Omori and H. Nishiura, “Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak,” Theoretical Biology and Medical Modelling, vol. 8, no. 1, article 2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Nishiura and H. Inaba, “Estimation of the incubation period of influenza A (H1N1-2009) among imported cases: addressing censoring using outbreak data at the origin of importation,” Journal of Theoretical Biology, vol. 272, no. 1, pp. 123–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Nishiura and K. Satou, “Potential effectiveness of public health interventions during the equine influenza outbreak in racehorse facilities in japan, 2007,” Transboundary and Emerging Diseases, vol. 57, no. 3, pp. 162–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. T. Wu, B. J. Cowling, E. H. Y. Lau et al., “School closure and mitigation of pandemic (H1N1) 2009, Hong Kong,” Emerging Infectious Diseases, vol. 16, no. 3, pp. 538–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Venzon and S. H. Moolgavkar, “Method for computing profile-likelihood-based confidence intervals,” Journal of the Royal Statistical Society, vol. 37, no. 1, pp. 87–94, 1988. View at Google Scholar · View at Scopus
  24. P. Y. Boëlle, S. Ansart, A. Cori, and A. J. Valleron, “Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review,” Influenza and other Respiratory Viruses, vol. 5, pp. 306–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Nishiura, G. Chowell, M. Safan, and C. Castillo-Chavez, “Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009,” Theoretical Biology and Medical Modelling, vol. 7, no. 1, article 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. K. Taubenberger and D. M. Morens, “1918 influenza: the mother of all pandemics,” Emerging Infectious Diseases, vol. 12, no. 1, pp. 15–22, 2006. View at Google Scholar · View at Scopus
  27. F. C. K. Li, B. C. K. Choi, T. Sly, and A. W. P. Pak, “Finding the real case-fatality rate of H5N1 avian influenza,” Journal of Epidemiology and Community Health, vol. 62, no. 6, pp. 555–559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Riley, K. O. Kwok, K. M. Wu et al., “Epidemiological characteristics of 2009 (H1N1) pandemic influenza based on paired sera from a longitudinal community cohort study,” Plos Medicine, vol. 8, no. 6, Article ID e1000442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Nishiura, “The relationship between the cumulative numbers of cases and deaths reveals the confirmed case fatality ratio of a novel influenza A (H1N1) virus,” Japanese Journal of Infectious Diseases, vol. 63, no. 2, pp. 154–156, 2010. View at Google Scholar · View at Scopus
  30. O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” Journal of the Royal Society Interface, vol. 7, no. 47, pp. 873–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Nishiura, G. Chowell, and C. Castillo-Chavez, “Did modeling overestimate the transmission potential of pandemic (H1N1-2009)? sample size estimation for post-epidemic seroepidemiological studies,” Plos one, vol. 6, no. 3, Article ID e17908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Nishiura, C. Castillo-Chavez, M. Safan, and G. Chowell, “Transmission potential of the new influenza A(H1N1) virus and its age-specificity in japan,” Euro Surveillance, vol. 14, no. 22, p. 19227, 2009. View at Google Scholar · View at Scopus
  33. T. Britton, “Stochastic epidemic models: a survey,” Mathematical Biosciences, vol. 225, no. 1, pp. 24–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. E. H.Y. Lam, B. J. Cowling, A. R. Cook, J. Y.T. Wong, M. S.Y. Lau, and H. Nishiura, “The feasibility of age-specific travel restrictions during influenza pandemics,” Theoretical Biology and Medical Modelling, vol. 8, no. 1, article 44, 2011. View at Publisher · View at Google Scholar
  35. J. Lessler, N. G. Reich, D. A. T. Cummings, H. P. Nair, H. T. Jordan, and N. Thompson, “Outbreak of 2009 pandemic influenza A (H1N1) at a new york city school,” New England Journal of Medicine, vol. 361, no. 27, pp. 2628–2636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Chowell, L. M. A. Bettencourt, N. Johnson, W. J. Alonso, and C. Viboud, “The 1918-1919 influenza pandemic in england and wales: spatial patterns in transmissibility and mortality impact,” Proceedings of the Royal Society B, vol. 275, no. 1634, pp. 501–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Richard, N. Sugaya, L. Simonsen, M. A. Miller, and C. Viboud, “A comparative study of the 1918–1920 influenza pandemic in Japan, USA and UK: mortality impact and implications for pandemic planning,” Epidemiology and Infection, vol. 137, no. 8, pp. 1062–1072, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Yang, J. D. Sugimoto, M. Elizabeth Halloran et al., “The transmissibility and control of pandemic influenza A (H1N1) virus,” Science, vol. 326, no. 5953, pp. 729–733, 2009. View at Publisher · View at Google Scholar · View at Scopus