Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 103476, 12 pages
http://dx.doi.org/10.1155/2013/103476
Research Article

Attenuation Correction for Small Animal PET Images: A Comparison of Two Methods

1Medical Physics Department, University Hospital S. Orsola-Malpighi, Via Massarenti 9, 40138 Bologna, Italy
2Medical Physics Department, IRCCS Fondazione Maugeri, Via Salvatore Maugeri 4, 27100 Pavia, Italy
3Medical Physics Department, IRCCS San Raffaele, Via Olgettina 60, 20132 Milano, Italy

Received 18 December 2012; Revised 9 March 2013; Accepted 10 March 2013

Academic Editor: Peng Feng

Copyright © 2013 Daniela D'Ambrosio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Huang and M. Phelps, “Principles of tracer kinetic modeling in positron emission tomography and autoradiography,” in Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, pp. 287–346, Raven Press, New York, NY, USA, 1986. View at Google Scholar
  2. H. Zaidi and B. Hasegawa, “Determination of the attenuation map in emission tomography,” Journal of Nuclear Medicine, vol. 44, no. 2, pp. 291–315, 2003. View at Google Scholar · View at Scopus
  3. H. Zaidi and K. F. Koral, “Scatter modelling and compensation in emission tomography,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 5, pp. 761–782, 2004. View at Publisher · View at Google Scholar
  4. M. Soret, S. L. Bacharach, and I. Buvat, “Partial-volume effect in PET tumor imaging,” Journal of Nuclear Medicine, vol. 48, no. 6, pp. 932–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. C. Huang, E. J. Hoffman, M. E. Phelps, and D. E. Kuhl, “Quantitation in positron emission computed tomography: II. Effects of inaccurate attenuation correction,” Journal of Computer Assisted Tomography, vol. 3, no. 6, pp. 804–814, 1979. View at Google Scholar · View at Scopus
  6. R. Yao, J. Seidel, J. S. Liow, and M. V. Green, “Attenuation correction for the NIH ATLAS small animal PET scanner,” IEEE Transactions on Nuclear Science, vol. 52, no. 3, pp. 664–668, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. L. Chow, F. R. Rannou, and A. F. Chatziioannou, “Attenuation correction for small animal PET tomographs,” Physics in Medicine and Biology, vol. 50, no. 8, pp. 1837–1850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. D. D’Ambrosio, A. E. Spinelli, S. Boschi et al., “Attenuation correction for pre-clinical PET images using a small animal CT scanner,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, p. S227, 2007. View at Google Scholar
  9. J. Yu, J. Seidel, M. Pomper, and B. M. W. Tsui, “Experimental evaluation of the bilinear transformation used in the CT-based attenuation correction for small animal PET imaging,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC '07), vol. 6, pp. 3747–3750, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Prasad, M. R. Ay, O. Ratib, and H. Zaidi, “CT-based attenuation correction on the FLEX Triumph preclinical PET/CT scanner,” in Proceedings of IEEE Nuclear Science Symposium Conference Record (NSS/MIC '09), pp. 3357–3362, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Bentourkia and O. Sarrhini, “Simultaneous attenuation and scatter corrections in small animal PET imaging,” Computerized Medical Imaging and Graphics, vol. 33, no. 6, pp. 477–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Herraiz, S. España, J. J. Vaquero, M. Desco, and J. M. Udías, “FIRST: fast iterative reconstruction software for (PET) tomography,” Physics in Medicine and Biology, vol. 51, no. 18, pp. 4547–4565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Germano and E. J. Hoffman, “Investigation of count rate and deadtime characteristics of a high resolution PET system,” Journal of Computer Assisted Tomography, vol. 12, no. 5, pp. 836–846, 1988. View at Google Scholar · View at Scopus
  14. R. A. DeKemp and C. Nahmias, “Attenuation correction in PET using single photon transmission measurement,” Medical Physics, vol. 21, no. 6, pp. 771–778, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Karp, G. Muehllehner, H. Qu, and X. H. Yan, “Singles transmission in volume-imaging PET with a 137Cs source,” Physics in Medicine and Biology, vol. 40, no. 5, pp. 929–944, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Huang, R. E. Carson, M. E. Phelps, E. J. Hoffman, H. R. Schelbert, and D. E. Kuhl, “A boundary method for attenuation correction in positron computed tomography,” Journal of Nuclear Medicine, vol. 22, no. 7, pp. 627–637, 1981. View at Google Scholar · View at Scopus
  17. E. Z. Xu, N. A. Mullani, K. L. Gould, and W. L. Anderson, “A segmented attenuation correction for PET,” Journal of Nuclear Medicine, vol. 32, no. 1, pp. 161–165, 1991. View at Google Scholar · View at Scopus
  18. A. Welch, C. Campbell, R. Clackdoyle et al., “Attenuation correction in PET using consistency information,” IEEE Transactions on Nuclear Science, vol. 45, pp. 3134–3141, 1998. View at Publisher · View at Google Scholar
  19. M. T. Madsen and J. R. Lee, “Emission based attenuation correction of PET images of the thorax,” in Proceedings of IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 967–997, 1999.
  20. V. Bettinardi, E. Pagani, M. C. Gilardi et al., “An automatic classification technique for attenuation correction in positron emission tomography,” European Journal of Nuclear Medicine, vol. 26, no. 5, pp. 447–458, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. E. Spinelli, D. D'Ambrosio, C. Pettinato et al., “Performance evaluation of a small animal PET scanner. Spatial resolution characterization using 18F and 11C,” Nuclear Instruments and Methods in Physics Research A, vol. 571, no. 1-2, pp. 215–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. V. Green, J. Seidel, C. A. Johnson, J. J. Vaquero, J. Pascau, and M. Desco, “Towards high performance small animal positron emission tomography,” in Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 369–372, 2002.
  23. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601–609, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Defrise, P. E. Kinahan, D. W. Townsend, C. Michel, M. Sibomana, and D. F. Newport, “Exact and approximate rebinning algorithms for 3-D pet data,” IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 145–158, 1997. View at Google Scholar · View at Scopus
  25. I. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” Journal of the Optical Society of America A, vol. 1, no. 6, pp. 612–619, 1984. View at Google Scholar · View at Scopus
  26. J. H. Hubbell and S. M. Seltzer, “Tables of X-Rays Mass Attenuation Coefficients and Mass Energy Absorption Coefficients (version 1. 3),” (Gaithersburg: NIST), 2001, http://physics.nist.gov/xaamdi.
  27. S. España, J. L. Herraiz, E. Vicente, J. J. Vaquero, M. Deseo, and J. M. Udías, “PeneloPET, a Monte Carlo PET simulation toolkit based on PENELOPE: features and validation,” in Proceedings of IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2597–2601, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. E. Spinelli, M. Marengo, C. Pettinato et al., “Evaluation of micro positron emission tomography and micro computed tomography image registration,” Molecular Imaging and Biology, vol. 8, article 103, 2006. View at Google Scholar
  29. A. M. Loening and S. S. Gambhir, “AMIDE: a free software tool for multimodality medical image analysis,” Molecular Imaging, vol. 2, no. 3, pp. 131–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. H. El Ali, R. P. Bodholdt, J. T. Jørgensen, R. Myschetzky, and A. Kjaer, “Importance of attenuation correction (AC) for small animal PET imaging,” Diagnostics, vol. 2, pp. 42–51, 2012. View at Publisher · View at Google Scholar