Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 238937, 13 pages
Research Article

Comparison of SVM and ANFIS for Snore Related Sounds Classification by Using the Largest Lyapunov Exponent and Entropy

1Department of Biomedical Equipment Technology, Vocational School of Technology, Başkent University, 06810 Ankara, Turkey
2Department of Electrical and Electronic Engineering, Faculty of Engineering, Başkent University, 06810 Ankara, Turkey

Received 28 May 2013; Revised 13 August 2013; Accepted 15 August 2013

Academic Editor: Ricardo Femat

Copyright © 2013 Haydar Ankışhan and Derya Yılmaz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Snoring, which may be decisive for many diseases, is an important indicator especially for sleep disorders. In recent years, many studies have been performed on the snore related sounds (SRSs) due to producing useful results for detection of sleep apnea/hypopnea syndrome (SAHS). The first important step of these studies is the detection of snore from SRSs by using different time and frequency domain features. The SRSs have a complex nature that is originated from several physiological and physical conditions. The nonlinear characteristics of SRSs can be examined with chaos theory methods which are widely used to evaluate the biomedical signals and systems, recently. The aim of this study is to classify the SRSs as snore/breathing/silence by using the largest Lyapunov exponent (LLE) and entropy with multiclass support vector machines (SVMs) and adaptive network fuzzy inference system (ANFIS). Two different experiments were performed for different training and test data sets. Experimental results show that the multiclass SVMs can produce the better classification results than ANFIS with used nonlinear quantities. Additionally, these nonlinear features are carrying meaningful information for classifying SRSs and are able to be used for diagnosis of sleep disorders such as SAHS.