Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 308520, 6 pages
http://dx.doi.org/10.1155/2013/308520
Research Article

Material Discrimination Based on K-edge Characteristics

1The Key Lab of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China
2The Key Lab of Biorheological Science and Technology of the Education Ministry of China, Chongqing University, Chongqing 400044, China

Received 25 July 2013; Revised 28 September 2013; Accepted 2 October 2013

Academic Editor: Liang Li

Copyright © 2013 Peng He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Wang, H. Yu, and B. De Man, “An outlook on X-ray CT research and development,” Medical Physics, vol. 35, no. 3, pp. 1051–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Campbell, E. H. M. Heijne, G. Meddeler, E. Pernigotti, and W. Snoeys, “A Readout Chip for a 64 × 64 Pixel Matrix with 15-bit Single Photon Counting,” IEEE Transactions on Nuclear Science, vol. 45, no. 3, pp. 751–753, 1998. View at Google Scholar · View at Scopus
  3. X. Llopart, M. Campbell, R. Dinapoli, D. San Segundo, and E. Pernigotti, “Medipix2: a 64 k pixel readout chip with 55-μm square elements working in single photon counting mode,” IEEE Transactions on Nuclear Science, vol. 49, no. 5, pp. 2279–2283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and W. Wong, “Medipix3: a 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance,” Nuclear Instruments and Methods in Physics Research A, vol. 633, no. 1, pp. S15–S18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Ballabriga, G. Blaj, M. Campbell et al., “Characterization of the Medipix3 pixel readout chip,” Journal of Instrumentation, vol. 6, no. 1, pp. 1052–1058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ballabriga, M. Campbell, E. H. M. Heijne, X. Llopart, and L. Tlustos, “The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance,” IEEE Transactions on Nuclear Science, vol. 54, no. 5, pp. 1824–1829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Giersch, M. Firsching, D. Niederlöhner, and G. Anton, “Material reconstruction with spectroscopic pixel X-ray detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 546, no. 1-2, pp. 125–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Firsching, P. T. Talla, T. Michel, and G. Anton, “Material resolving X-ray imaging using spectrum reconstruction with Medipix2,” Nuclear Instruments and Methods in Physics Research A, vol. 591, no. 1, pp. 19–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. C. Frey, X. Wang, Y. Du et al., “Investigation of the use of photon counting X-ray detectors with energy discrimination capability for material decomposition in micro-computed tomography,” Physics of Medical Imaging, vol. 6510, pp. 93–103, 2007. View at Google Scholar
  10. S. J. Nik, J. Meyer, and R. Watts, “Optimal material discrimination using spectral X-ray imaging,” Physics in Medicine and Biology, vol. 56, no. 18, pp. 5969–5983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Norlin, A. Manuilskiy, H.-E. Nilsson, and C. Fröjdh, “Material recognition with the Medipix photon counting colour X-ray system,” Nuclear Instruments and Methods in Physics Research A, vol. 531, no. 1-2, pp. 265–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Q. Le and S. Molloi, “Least squares parameter estimation methods for material decomposition with energy discriminating detectors,” Medical Physics, vol. 38, no. 1, pp. 245–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Firsching, D. Niederlöhner, T. Michel, and G. Anton, “Quantitative material reconstruction in CT with spectroscopic X-ray pixel detectors—A Simulation Study,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2257–2259, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. G. Anderson, A. P. Butler, N. J. A. Scott et al., “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” European Radiology, vol. 20, no. 9, pp. 2126–2134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Roessl, B. Brendel, K.-J. Engel, J.-P. Schlomka, A. Thran, and R. Proksa, “Sensitivity of photon-counting based K-Edge Imaging in X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp. 1678–1690, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Abudurexiti, M. Kameda, E. Sato et al., “Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector,” Radiological Physics and Technology, vol. 3, no. 2, pp. 127–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Xu, H. Y. Yu, J. Bennett et al., “Image reconstruction for hybrid true-color micro-CT,” IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1711–1719, 2012. View at Google Scholar
  18. P. He, H. Y. Yu, P. Thayer et al., “Preliminary experimental results from a MARS micro-CT system,” Journal of X-Ray Science and Technology, vol. 20, pp. 199–211, 2012. View at Google Scholar
  19. M. Firsching, A. P. Butler, N. Scott, N. G. Anderson, T. Michel, and G. Anton, “Contrast agent recognition in small animal CT using the Medipix2 detector,” Nuclear Instruments and Methods in Physics Research A, vol. 607, no. 1, pp. 179–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Riederer and C. A. Mistretta, “Selective iodine imaging using K-edge energies in computerized X-ray tomography,” Medical Physics, vol. 4, no. 6, pp. 474–481, 1977. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Schlomka, E. Roessl, R. Dorscheid et al., “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography,” Physics in Medicine and Biology, vol. 53, no. 15, pp. 4031–4047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. He, B. Wei, W. X. Cong, and G. Wang, “Optimization of K-edge Imaging with Spectral CT,” Medical Physics, vol. 39, pp. 6572–6579, 2012. View at Google Scholar
  23. H. Hinghofer-Szalkay and J. E. Greenleaf, “Continuous monitoring of blood volume changes in humans,” Journal of Applied Physiology, vol. 63, no. 3, pp. 1003–1007, 1987. View at Google Scholar · View at Scopus
  24. J. R. Cameron, J. G. Skofronick, and R. M. Grant, Physics of the Body, Medical Physics, 1999.
  25. A. I. Saito, J. G. Li, C. Liu, K. R. Olivier, and J. F. Dempsey, “Accurate heterogeneous dose calculation for lung cancer patients without high-resolution CT densities,” Journal of Applied Clinical Medical Physics, vol. 10, no. 2, pp. 92–103, 2009. View at Google Scholar · View at Scopus
  26. N. H. Clinthorne, “A constrained dual-energy reconstruction method for material-selective transmission tomography,” Nuclear Instruments and Methods in Physics Research A, vol. 353, no. 1–3, pp. 347–348, 1994. View at Google Scholar · View at Scopus
  27. G. Poludniowski, G. Landry, F. Deblois, P. M. Evans, and F. Verhaegen, “SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes,” Physics in Medicine and Biology, vol. 54, no. 19, pp. N433–N438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.