Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 340678, 8 pages
http://dx.doi.org/10.1155/2013/340678
Research Article

SNP Selection in Genome-Wide Association Studies via Penalized Support Vector Machine with MAX Test

1Department of Statistics and Information Science, Dongguk University, Gyeongju 780-714, Republic of Korea
2Samsung Cancer Research Institute, Samsung Medical Center, Seoul 137-710, Republic of Korea
3Department of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada M5G 2M9
4Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA

Received 22 May 2013; Revised 14 August 2013; Accepted 22 August 2013

Academic Editor: Wenqing He

Copyright © 2013 Jinseog Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Hoggart, J. C. Whittaker, M. De Iorio, and D. J. Balding, “Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies,” PLoS Genetics, vol. 4, no. 7, Article ID e1000130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Ayers and H. J. Cordell, “SNP Selection in genome-wide and candidate gene studies via penalized logistic regression,” Genetic Epidemiology, vol. 34, no. 8, pp. 879–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. T. Wu, Y. F. Chen, T. Hastie, E. Sobel, and K. Lange, “Genome-wide association analysis by lasso penalized logistic regression,” Bioinformatics, vol. 25, no. 6, pp. 714–721, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” Journal of the Royal Statistical Society B, vol. 73, no. 3, pp. 273–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani, “Pathwise coordinate optimization,” Annals of Applied Statistics, vol. 1, no. 2, pp. 302–332, 2007. View at Google Scholar
  6. C. Kooperberg, M. LeBlanc, and V. Obenchain, “Risk prediction using genome-wide association studies,” Genetic Epidemiology, vol. 34, no. 7, pp. 643–652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society B, vol. 67, no. 2, pp. 301–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Wei, K. Wang, H.-Q. Qu et al., “From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes,” PLoS Genetics, vol. 5, no. 10, Article ID e1000678, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, “Principal components analysis corrects for stratification in genome-wide association studies,” Nature Genetics, vol. 38, no. 8, pp. 904–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Abraham, A. Kowalczyk, J. Zobel, and M. Inouye, “Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease,” Genetic Epidemiology, vol. 37, no. 2, pp. 184–195, 2013. View at Publisher · View at Google Scholar
  11. B. Freidlin, G. Zheng, Z. Li, and J. L. Gastwirth, “Trend tests for case-control studies of genetic markers: power, sample size and robustness,” Human Heredity, vol. 53, no. 3, pp. 146–152, 2002. View at Google Scholar · View at Scopus
  12. G. Zheng, B. Freidlin, and J. L. Gastwirth, “Comparison of robust tests for genetic association using case-control studies,” in IMS Lecture Notes-Monograph Series 2nd Lehmann Symposium—Optimality, vol. 49, pp. 253–265, 2006. View at Google Scholar
  13. R. Sladek, G. Rocheleau, J. Rung et al., “A genome-wide association study identifies novel risk loci for type 2 diabetes,” Nature, vol. 445, no. 7130, pp. 881–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kim, I. Sohn, D. Son, D. H. Kim, T. Ahn, and S. Jung, “Prediction of a time-to-event trait using genome wide SNP data,” BMC Bioinformatics, vol. 14, p. 58, 2013. View at Publisher · View at Google Scholar
  15. N. Becker, W. Werft, G. Toedt, P. Lichter, and A. Benner, “PenalizedSVM: a R-package for feature selection SVM classification,” Bioinformatics, vol. 25, no. 13, pp. 1711–1712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1996.
  17. B. Scholkopf and A. Smola, Learning With Kernels—Support Vector Machines, Regularization, Optimization and Beyond, MIT Press, 2002.
  18. G. Wahba, Y. Lin, and H. Zhang, “Gacv for support vector machines,” in Advances in Large Margin Classiers, A. J. Smola, P. L. Bartlett, B. Scholkopf, and D. Schuurmans, Eds., pp. 297–211, 2000. View at Google Scholar
  19. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Data Mining, Inference and Prediction, Springer, New York, NY, USA, 2001.
  20. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using support vector machines,” Machine Learning, vol. 46, no. 1–3, pp. 389–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Bradley and O. Mangasarian, “Feature selection via concave minimization and support vector machines,” in Morgan Kaufmann (ICML '98), 1998.
  22. J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, “1-norm support vector machines,” in Neural Information Processing Systems 16. Massachusettes, MIT Press, 2003. View at Google Scholar
  23. H. Zou, “An improved 1-norm SVM for simultaneous classification and variable selection,” in Proceedings of the Eleventh International Conference on Articial Intelligence and Statistics, vol. 2, pp. 675–681, 2007.
  24. J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties,” Journal of the American Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001. View at Google Scholar · View at Scopus
  25. H. H. Zhang, J. Ahn, X. Lin, and C. Park, “Gene selection using support vector machines with non-convex penalty,” Bioinformatics, vol. 22, no. 1, pp. 88–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Wang, J. Zhu, and H. Zou, “The doubly regularized support vector machine,” Statistica Sinica, vol. 16, no. 2, pp. 589–615, 2006. View at Google Scholar · View at Scopus
  27. P. D. Sasieni, “From genotypes to genes: doubling the sample size,” Biometrics, vol. 53, no. 4, pp. 1253–1261, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Zheng, B. Freidlin, Z. Li, and J. L. Gastwirth, “Choice of scores in trend tests for case-control studies of candidate-gene associations,” Biometrical Journal, vol. 45, no. 3, pp. 335–348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Gastwirth, “The use of maximin efficiency robust tests in combining contingency tables and survival analysis,” Journal of the American Statistical Association, vol. 80, no. 390, pp. 380–384, 1985. View at Publisher · View at Google Scholar
  30. K. N. Conneely and M. Boehnke, “So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests,” American Journal of Human Genetics, vol. 81, no. 6, pp. 1158–1168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Li, K. Yu, Z. Li, and G. Zheng, “MAX-rank: a simple and robust genome-wide scan for case-control association studies,” Human Genetics, vol. 123, no. 6, pp. 617–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Q. Li, G. Zheng, Z. Li, and K. Yu, “Efficient approximation of P-value of the maximum of correlated tests, with applications to genome-wide association studies,” Annals of Human Genetics, vol. 72, no. 3, pp. 397–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Kim et al., “Genome-wide genotype-based prognostic stratification of treatment outcomes following Imatinib therapy in chronic myeloid leukemia in chronic phase,” In submission, 2013.
  34. D. H. Kim, J. H. Kong, J. Y. Byeun et al., “The IFNG (IFN-γ) genotype predicts cytogenetic and molecular response to imatinib therapy in chronic myeloid leukemia,” Clinical Cancer Research, vol. 16, no. 21, pp. 5339–5350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Ebner, R.-H. Chen, S. Lawler, T. Zioncheck, and R. Derynck, “Determination of type I receptor specificity by the type II receptors for TGF-β or activin,” Science, vol. 262, no. 5135, pp. 900–902, 1993. View at Google Scholar · View at Scopus
  36. S. P. Oh, T. Seki, K. A. Goss et al., “Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 6, pp. 2626–2631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Razani, X. L. Zhang, M. Bitzer et al., “Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor,” The Journal of Biological Chemistry, vol. 276, no. 9, pp. 6727–6738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Kawabata, A. Chytil, and H. L. Moses, “Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-β receptor,” The Journal of Biological Chemistry, vol. 270, no. 10, pp. 5625–5630, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. S.-J. Kim and J. Lettirio, “Transforming growth factor-β signaling in normal and malignant hematopoiesis,” Leukemia, vol. 17, no. 9, pp. 1731–1737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. N. O. Fortunel, J. A. Hatzfeld, M.-N. Monier, and A. Hatzfeld, “Control of hematopoietic stem/progenitor cell fate by transforming growth factor-β,” Oncology Research, vol. 13, no. 6–10, pp. 445–453, 2002. View at Google Scholar · View at Scopus
  41. B. Bierie and H. L. Moses, “Tumour microenvironment—TGFΒ: the molecular Jekyll and Hyde of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 506–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Naka, T. Hoshii, T. Muraguchi et al., “TGF-Β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia,” Nature, vol. 463, no. 7281, pp. 676–680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Miyazono, “Tumour promoting functions of TGF-Β in CML-initiating cells,” The Journal of Biochemistry, vol. 152, no. 5, pp. 383–385, 2012. View at Publisher · View at Google Scholar