Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 470390, 11 pages
http://dx.doi.org/10.1155/2013/470390
Research Article

Uses of Phage Display in Agriculture: Sequence Analysis and Comparative Modeling of Late Embryogenesis Abundant Client Proteins Suggest Protein-Nucleic Acid Binding Functionality

1Agricultural Science Center, Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA
2Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
3Plant Science Building, Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA
4Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
5Center for Computational Sciences, University of Kentucky, Lexington, KY 40506, USA

Received 27 February 2013; Accepted 2 April 2013

Academic Editor: Jian Huang

Copyright © 2013 Rekha Kushwaha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Clegg, “Cryptobiosis—a peculiar state of biological organization,” Comparative Biochemistry and Physiology, vol. 128, no. 4, pp. 613–624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. Crowe, J. F. Carpenter, and L. M. Crowe, “The role of vitrification in anhydrobiosis,” Annual Review of Physiology, vol. 60, pp. 73–103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Buitink, O. Leprince, M. A. Hemminga, and F. A. Hoekstra, “Molecular mobility in the cytoplasm: an approach to describe and predict lifespan of dry germplasm,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2385–2390, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Q. Sun and A. C. Leopold, “Cytoplasmic vitrification and survival of anhydrobiotic organisms,” Comparative Biochemistry and Physiology A, vol. 117, no. 3, pp. 327–333, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Leprince, F. J. M. Harren, J. Buitink, M. Alberda, and F. A. Hoekstra, “Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles,” Plant Physiology, vol. 122, no. 2, pp. 597–608, 2000. View at Google Scholar · View at Scopus
  6. J. Buitink and O. Leprince, “Glass formation in plant anhydrobiotes: survival in the dry state,” Cryobiology, vol. 48, no. 3, pp. 215–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. W. F. Wolkers, S. McCready, W. F. Brandt, G. G. Lindsey, and F. A. Hoekstra, “Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro,” Biochimica et Biophysica Acta, vol. 1544, no. 1-2, pp. 196–206, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Goyal, L. J. Walton, and A. Tunnacliffe, “LEA proteins prevent protein aggregation due to water stress,” Biochemical Journal, vol. 388, part 1, pp. 151–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Boucher, J. Buitink, X. Lin et al., “MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins,” Plant, Cell and Environment, vol. 33, no. 3, pp. 418–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Dure III, S. C. Greenway, and G. A. Galau, “Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis,” Biochemistry, vol. 20, no. 14, pp. 4162–4168, 1981. View at Google Scholar · View at Scopus
  11. G. A. Galau, D. W. Hughes, and L. I. Dure, “Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridizationembryogenesis-abundant (LEA) mRNAs,” Plant Molecular Biology, vol. 7, pp. 155–170, 1986. View at Google Scholar
  12. J. M. Mouillon, P. Gustafsson, and P. Harryson, “Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments,” Plant Physiology, vol. 141, no. 2, pp. 638–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. C. Hand, M. A. Menze, M. Toner, L. Boswell, and D. Moore, “LEA proteins during water stress: not just for plants anymore,” Annual Review of Physiology, vol. 73, pp. 115–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Singh, C. C. Cornilescu, R. C. Tyler et al., “Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein,” Protein Science, vol. 14, no. 10, pp. 2601–2609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Tolleter, M. Jaquinod, C. Mangavel et al., “Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation,” Plant Cell, vol. 19, no. 5, pp. 1580–1589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Eom, W. R. Baker, A. Kintanar, and E. S. Wurtele, “The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution,” Plant Science, vol. 115, no. 1, pp. 17–24, 1996. View at Google Scholar · View at Scopus
  17. J. L. Soulages, K. Kim, E. L. Arrese, C. Walters, and J. C. Cushman, “Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure,” Plant Physiology, vol. 131, no. 3, pp. 963–975, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. L. Soulages, K. Kim, C. Walters, and J. C. Cushman, “Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean,” Plant Physiology, vol. 128, no. 3, pp. 822–832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Lisse, D. Bartels, H. R. Kalbitzer, and R. Jaenicke, “The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state,” Biological Chemistry, vol. 377, no. 9, pp. 555–561, 1996. View at Google Scholar · View at Scopus
  20. P. S. Russouw, J. Farrant, W. Brandt, and G. G. Lindsey, “The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is an LEA group I protein; its conformation is not affected by exposure to high temperature,” Seed Science Research, vol. 7, no. 2, pp. 117–123, 1997. View at Google Scholar · View at Scopus
  21. A. M. Ismail, A. E. Hall, and T. J. Close, “Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea,” Plant Physiology, vol. 120, no. 1, pp. 237–244, 1999. View at Google Scholar · View at Scopus
  22. C. B. F. Andersen, L. Ballut, J. S. Johansen et al., “Structure of the exon junction core complex with a trapped DEAD-Box ATPase bound to RNA,” Science, vol. 313, no. 5795, pp. 1968–1972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Howard, W. H. Lim, C. A. Fierke, and M. Koutmos, “Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 40, pp. 16149–16154, 2012. View at Google Scholar
  24. F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, and T. Schwede, “The SWISS-MODEL repository and associated resources,” Nucleic Acids Research, vol. 37, no. 1, pp. D387–D392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Kushwaha, T. D. Lloyd, K. R. Schäfermeyer, S. Kumar, and A. B. Downie, “Identification of late embryogenesis abundant (LEA) protein putative interactors using phage display,” International Journal of Molecular Sciences, vol. 13, no. 6, pp. 6582–6603, 2012. View at Google Scholar
  26. A. Biegert, C. Mayer, M. Remmert, J. Söding, and A. N. Lupas, “The MPI Bioinformatics Toolkit for protein sequence analysis,” Nucleic Acids Research, vol. 34, pp. W335–W339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Söding, “Protein homology detection by HMM-HMM comparison,” Bioinformatics, vol. 21, no. 7, pp. 951–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Söding, A. Biegert, and A. N. Lupas, “The HHpred interactive server for protein homology detection and structure prediction,” Nucleic Acids Research, vol. 33, no. 2, pp. W244–W248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Remmert, A. Biegert, A. Hauser, and J. Söding, “HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment,” Nature Methods, vol. 9, no. 2, pp. 173–175, 2012. View at Google Scholar
  30. A. Šali, “Comparative protein modeling by satisfaction of spatial restraints,” Molecular Medicine Today, vol. 1, no. 6, pp. 270–277, 1995. View at Google Scholar · View at Scopus
  31. H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000. View at Google Scholar · View at Scopus
  32. K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Bordoli, F. Kiefer, K. Arnold, P. Benkert, J. Battey, and T. Schwede, “Protein structure homology modeling using SWISS-MODEL workspace,” Nature Protocols, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models,” Bioinformatics, vol. 27, no. 3, pp. 343–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Gasteiger, C. Hoogland, A. Gattiker et al., “Protein identification and analysis tools on the ExPASy server,” in The Proteomics Protocols Handbook, J. M. Walker, Ed., pp. 571–607, Humana Press, New Jersey, NJ, USA, 2005. View at Google Scholar
  36. T. Chen, N. Nayak, S. M. Majee et al., “Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning,” The Journal of Biological Chemistry, vol. 285, no. 48, pp. 37281–37292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. M. Baker and G. H. Grant, “Role of aromatic amino acids in protein-nucleic acid recognition,” Biopolymers, vol. 85, no. 5-6, pp. 456–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, vol. 157, no. 1, pp. 105–132, 1982. View at Google Scholar · View at Scopus
  39. P. Horton, K. J. Park, T. Obayashi et al., “WoLF PSORT: protein localization predictor,” Nucleic Acids Research, vol. 35, pp. W585–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Rice, L. Longden, and A. Bleasby, “EMBOSS: the European molecular biology open software suite,” Trends in Genetics, vol. 16, no. 6, pp. 276–277, 2000. View at Google Scholar · View at Scopus
  41. D. J. Merkler, “C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity,” Enzyme and Microbial Technology, vol. 16, no. 6, pp. 450–456, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Gould, G. A. Keller, and S. Subramani, “Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins,” Journal of Cell Biology, vol. 107, no. 3, pp. 897–905, 1988. View at Google Scholar · View at Scopus
  43. G. B. Monshausen and S. Gilroy, “Feeling green: mechanosensing in plants,” Trends in Cell Biology, vol. 19, no. 5, pp. 228–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. E. D'Souza, M. H. Ginsberg, and E. F. Plow, “Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif,” Trends in Biochemical Sciences, vol. 16, no. 7, pp. 246–250, 1991. View at Google Scholar · View at Scopus
  45. D. Krylov and C. R. Vinson, “Leucine zipper,” in Els, pp. 1–7, John Wiley & Sons, New York, NY, USA, 2001. View at Google Scholar
  46. A. Singh and S. E. Hitchcock-Degregori, “Dual requirement for flexibility and specificity for binding of the coiled-coil tropomyosin to its target, actin,” Structure, vol. 14, no. 1, pp. 43–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. T. E. Dever, M. J. Glynias, and W. C. Merrick, “GTP-binding domain: three consensus sequence elements with distinct spacing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 7, pp. 1814–1818, 1987. View at Google Scholar · View at Scopus
  48. D. C. Fry, S. A. Kuby, and A. S. Mildvan, “ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 4, pp. 907–911, 1986. View at Google Scholar · View at Scopus
  49. E. V. Koonin, “A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif,” Journal of Molecular Biology, vol. 229, no. 4, pp. 1165–1174, 1993. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Moller and R. Amons, “Phosphate-binding sequences in nucleotide-binding proteins,” FEBS Letters, vol. 186, no. 1, pp. 1–7, 1985. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Saraste, P. R. Sibbald, and A. Wittinghofer, “The P-loop—a common motif in ATP- and GTP-binding proteins,” Trends in Biochemical Sciences, vol. 15, no. 11, pp. 430–434, 1990. View at Google Scholar · View at Scopus
  52. J. E. Walker, M. Saraste, M. J. Runswick, and N. J. Gay, “Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold,” The EMBO Journal, vol. 1, no. 8, pp. 945–951, 1982. View at Google Scholar · View at Scopus
  53. D. J. Klein, P. B. Moore, and T. A. Steitz, “The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit,” Journal of Molecular Biology, vol. 340, no. 1, pp. 141–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Jonassen, J. F. Collins, and D. G. Higgins, “Finding flexible patterns in unaligned protein sequences,” Protein Science, vol. 4, no. 8, pp. 1587–1595, 1995. View at Google Scholar · View at Scopus
  55. A. Golovin and K. Henrick, “MSDmotif: exploring protein sites and motifs,” BMC Bioinformatics, vol. 9, article 312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Olvera-Carrillo, F. Campos, J. L. Reyes, A. Garciarrubio, and A. A. Covarrubias, “Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in arabidopsis,” Plant Physiology, vol. 154, no. 1, pp. 373–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. T. P. Hopp and K. R. Woods, “Prediction of protein antigenic determinants from amino acid sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 6 I, pp. 3824–3828, 1981. View at Google Scholar · View at Scopus
  58. R. D. Finn, J. Mistry, J. Tate et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 38, no. 1, pp. D211–D222, 2010. View at Google Scholar · View at Scopus
  59. P. Gouet, E. Courcelle, D. I. Stuart, and F. Métoz, “ESPript: analysis of multiple sequence alignments in PostScript,” Bioinformatics, vol. 15, no. 4, pp. 305–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Fant, W. Vranken, W. Broekaert, and F. Borremans, “Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR,” Journal of Molecular Biology, vol. 279, no. 1, pp. 257–270, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Chandramouli, M. Topf, J. F. Ménétret et al., “Structure of the mammalian 80S ribosome at 8.7 Å resolution,” Structure, vol. 16, no. 4, pp. 535–548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Klinge, F. Voigts-Hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban, “Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6,” Science, vol. 334, no. 6058, pp. 941–948, 2011. View at Google Scholar
  63. A. Ben-Shem, N. G. De Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and M. Yusupov, “The structure of the eukaryotic ribosome at 3.0 Å resolution,” Science, vol. 334, no. 6062, pp. 1524–1529, 2011. View at Google Scholar
  64. J. P. Armache, A. Jarasch, A. M. Anger et al., “Localization of eukaryote-specific ribosomal proteins in a 5. 5-Å cryo-EM map of the 80S eukaryotic ribosome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 19754–19759, 2010. View at Google Scholar
  65. J. Ren, S. Samshury, J. E. Nettleship, N. J. Saunders, and R. J. Owens, “The crytal structure of NGOO47 from Neisseria gonorrhoeae reveals a novel protein fold incorporating a helix-turn-helix motif,” Proteins, vol. 78, no. 7, pp. 1798–1802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. R. K. Salinas, C. M. Camilo, S. Tomaselli et al., “Solution structure of the C-terminal domain of multiprotein bridging factor 1 (MBF1) of Trichoderma reesei,” Proteins, vol. 75, no. 2, pp. 518–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. R. G. Tandang-Silvas, T. Fukuda, C. Fukuda et al., “Conservation and divergence on plant seed 11S globulins based on crystal structures,” Biochimica et Biophysica Acta, vol. 1804, no. 7, pp. 1432–1442, 2010. View at Publisher · View at Google Scholar · View at Scopus