Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2013 (2013), Article ID 517287, 14 pages
http://dx.doi.org/10.1155/2013/517287
Research Article

Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS

1Universität Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II, Pfaffenwaldring 7, 70569 Stuttgart, Germany
2Stuttgart Research Centre for Simulation Technology, Pfaffenwaldring 5a, 70569 Stuttgart, Germany

Received 25 July 2013; Revised 28 August 2013; Accepted 13 September 2013

Academic Editor: Eduardo Soudah

Copyright © 2013 Thomas Heidlauf and Oliver Röhrle. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. van Ingen Schenau, M. F. Bobbert, G. J. Ettema, J. B. de Graaf, and P. A. Huijing, “A simulation of rat edl force output based on intrinsic muscle properties,” Journal of Biomechanics, vol. 21, no. 10, pp. 815–824, 1988. View at Google Scholar · View at Scopus
  2. M. G. Pandy, “Computer modeling and simulation of human movement,” Annual Review of Biomedical Engineering, vol. 3, pp. 245–273, 2001. View at Publisher · View at Google Scholar
  3. M. Günther, S. Schmitt, and V. Wank, “High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models,” Biological Cybernetics, vol. 97, no. 1, pp. 63–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Günther and S. Schmitt, “A macroscopic ansatz to deduce the Hill relation,” Journal of Theoretical Biology, vol. 263, no. 4, pp. 407–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Meier and R. Blickhan, “FEM-simulation of skeletal muscle: the influence of inertia during activation and deactivation,” in Skeletal Muscle Mechanics: From Mechanisms to Function, W. Herzog, Ed., chapter 12, pp. 207–233, John Wiley & Sons, 2000. View at Google Scholar
  6. S. S. Blemker, P. M. Pinsky, and S. L. Delp, “A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii,” Journal of Biomechanics, vol. 38, no. 4, pp. 657–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Röhrle and A. J. Pullan, “Three-dimensional finite element modelling of muscle forces during mastication,” Journal of Biomechanics, vol. 40, no. 15, pp. 3363–3372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. E. Zajac, “Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control,” Critical Reviews in Biomedical Engineering, vol. 17, no. 4, pp. 359–411, 1989. View at Google Scholar · View at Scopus
  9. S. S. Blemker and S. L. Delp, “Three-dimensional representation of complex muscle architectures and geometries,” Annals of Biomedical Engineering, vol. 33, no. 5, pp. 661–673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. R. Smith, G. Meyer, and R. L. Lieber, “Systems analysis of biologicalnetworks in skeletal muscle function,” Wiley Interdisciplinary Reviews, vol. 5, no. 1, pp. 55–71, 2013. View at Google Scholar
  11. P. R. Shorten, P. O'Callaghan, J. B. Davidson, and T. K. Soboleva, “A mathematical model of fatigue in skeletal muscle force contraction,” Journal of Muscle Research and Cell Motility, vol. 28, no. 6, pp. 293–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Hernández-Gascón, J. Grasa, B. Calvo, and J. Rodríguez, “A 3D electro-mechanical continuum model for simulating skeletal muscle contraction,” Journal of Theoretical Biology, pp. 108–118, 2013. View at Google Scholar
  13. J. W. Fernandez, M. L. Buist, D. P. Nickerson, and P. J. Hunter, “Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework,” Medical Engineering and Physics, vol. 27, no. 10, pp. 862–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Böl, R. Weikert, and C. Weichert, “A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7, pp. 1299–1310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Röhrle, J. B. Davidson, and A. J. Pullan, “Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle,” SIAM Journal on Scientific Computing, vol. 30, no. 6, pp. 2882–2904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Röhrle, “Simulating the electro-mechanical behavior of skeletalmuscles,” IEEE Computing in Science and Engineering, vol. 12, no. 6, pp. 48–58, 2010. View at Google Scholar
  17. O. Röhrle, M. Sprenger, E. Ramasamy, and T. Heidlauf, “Multiscale skeletal muscle modeling: from cellular level to a multi-segmentSkeletal muscle model of the upper limb,” in Computer Models in Biomechanics, G. A. Holzapfel and E. Kuhl, Eds., pp. 103–116, Springer, Amsterdam, The Netherlands, 2013. View at Google Scholar
  18. O. Röhrle, J. B. Davidson, and A. J. Pullan, “A physiologically based, multi-scale model of skeletal muscle structure and function,” Frontiers in Physiology, vol. 3, 2012. View at Google Scholar
  19. C. Bradley, A. Bowery, R. Britten et al., “OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project,” Progress in Biophysics and Molecular Biology, vol. 107, no. 1, pp. 32–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. R. Christie, P. M. F. Nielsen, S. Blackett, C. P. Bradley, and P. J. Hunter, “Fieldml: concepts and implementation,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1895, pp. 1869–1884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Garny, D. P. Nickerson, J. Cooper et al., “CellML and associated tools and techniques,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1878, pp. 3017–3043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Lloyd, M. D. B. Halstead, and P. F. Nielsen, “CellML: its future, present and past,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 433–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment and rate coding organization in motor-unit pools,” Journal of Neurophysiology, vol. 70, no. 6, pp. 2470–2488, 1993. View at Google Scholar · View at Scopus
  24. F. Negro and D. Farina, “Decorrelation of cortical inputs and motoneuron output,” Journal of Neurophysiology, vol. 106, no. 5, pp. 2688–2697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, 2nd edition, 2008.
  26. A. J. M. Spencer, “Theory of invariants,” in Continuum Physics, A. Eringen, Ed., vol. 1, pp. 239–353, Academic Press, New York, NY, USA, 1971. View at Google Scholar
  27. A. J. M. Spencer, Deformations of Fibre-Reinforced Materials, Oxford University Press, 1972.
  28. G. A. Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons, West Sussex, England, 2000.
  29. Y. Zheng, A. F. T. Mak, and B. Lue, “Objective assessment of limb tissue elasticity: development of a manual indentation procedure,” Journal of Rehabilitation Research and Development, vol. 36, no. 2, pp. 71–85, 1999. View at Google Scholar · View at Scopus
  30. B. Markert, W. Ehlers, and N. Karajan, “A general polyconvex strainenergy function for fiber-reinforced materials,” Proceedings in Applied Mathematics and Mechanics, vol. 5, no. 1, pp. 245–246, 2005. View at Publisher · View at Google Scholar
  31. D. Hawkins and M. Bey, “A comprehensive approach for studying muscle-tendon mechanics,” Journal of Biomechanical Engineering, vol. 116, no. 1, pp. 51–55, 1994. View at Google Scholar · View at Scopus
  32. A. E. Ehret, M. Böl, and M. Itskov, “A continuum constitutive model for the active behaviour of skeletal muscle,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 3, pp. 625–636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. B. R. MacIntosh, P. F. Gardiner, and A. J. McComas, Skeletal Muscle: Form and Function, Human Kinetics, 2nd edition, 2006.
  34. A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society B, vol. 126, no. 843, pp. 136–195, 1938. View at Publisher · View at Google Scholar
  35. R. H. Adrian and L. D. Peachey, “Reconstruction of the action potential of frog sartorius muscle,” The Journal of Physiology, vol. 235, no. 1, pp. 103–131, 1973. View at Google Scholar · View at Scopus
  36. W. Wallinga, S. L. Meijer, M. J. Alberink, M. Vliek, E. D. Wienk, and D. L. Ypey, “Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system,” European Biophysics Journal, vol. 28, no. 4, pp. 317–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Ríos, M. Karhanek, J. Ma, and A. González, “An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle,” The Journal of General Physiology, vol. 102, no. 3, pp. 449–481, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Baylor and S. Hollingworth, “Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle,” The Journal of General Physiology, vol. 112, no. 3, pp. 297–316, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. M. V. Razumova, A. E. Bukatina, and K. B. Campbell, “Stiffness-distortion sarcomere model for muscle simulation,” Journal of Applied Physiology, vol. 87, no. 5, pp. 1861–1876, 1999. View at Google Scholar · View at Scopus
  40. M. V. Razumova, A. E. Bukatina, and K. B. Campbell, “Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior,” Biophysical Journal, vol. 78, no. 6, pp. 3120–3137, 2000. View at Google Scholar · View at Scopus
  41. K. B. Campbell, M. V. Razumova, R. D. Kirkpatrick, and B. K. Slinker, “Myofilament kinetics in isometric twitch dynamics,” Annals of Biomedical Engineering, vol. 29, no. 5, pp. 384–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. K. B. Campbell, M. V. Razumova, R. D. Kirkpatrick, and B. K. Slinker, “Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness,” Biophysical Journal, vol. 81, no. 4, pp. 2278–2296, 2001. View at Google Scholar · View at Scopus
  43. A. F. Huxley and R. Niedergerke, “Structural changes in muscle during contraction: interference microscopy of living muscle fibres,” Nature, vol. 173, no. 4412, pp. 971–973, 1954. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Y. Scovil and J. L. Ronsky, “Sensitivity of a Hill-based muscle model to perturbations in model parameters,” Journal of Biomechanics, vol. 39, no. 11, pp. 2055–2063, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Till, T. Siebert, C. Rode, and R. Blickhan, “Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination,” Journal of Theoretical Biology, vol. 255, no. 2, pp. 176–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. V. Hill, First and Last Experiments in Muscle Mechanics, UniversityPress Cambridge, 1970.
  47. B. R. Epstein and K. R. Foster, “Anisotropy in the dielectric properties of skeletal muscle,” Medical and Biological Engineering and Computing, vol. 21, no. 1, pp. 51–55, 1983. View at Google Scholar · View at Scopus
  48. F. L. H. Gielen, W. Wallinga-de Jonge, and K. L. Boon, “Electrical conductivity of skeletal muscle tissue: experimental results from different muscles in vivo,” Medical and Biological Engineering and Computing, vol. 22, no. 6, pp. 569–577, 1984. View at Google Scholar · View at Scopus
  49. A. J. Pullan, M. L. Buist, and L. K. Cheng, Mathematically Modellingthe Electrical Activity of the Heart: From Cell to Body Surfaceand Back Again, World Scientific, 2005.
  50. J. Sundnes, B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito, “On the computational complexity of the bidomain and the monodomain models of electrophysiology,” Annals of Biomedical Engineering, vol. 34, no. 7, pp. 1088–1097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. B. F. Nielsen, T. S. Ruud, G. T. Lines, and A. Tveito, “Optimal monodomain approximations of the bidomain equations,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 276–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. B. Davidson, Biophysical modelling of skeletal muscle [Ph.D. thesis], University of Auckland, Auckland, New Zealand, 2009.
  53. J. Sundnes, G. T. Lines, and A. Tveito, “An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso,” Mathematical Biosciences, vol. 194, no. 2, pp. 233–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, vol. 1, Butterworth-Heinemann, 2005.
  55. C. Linder, M. Tkachuk, and C. Miehe, “A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 10, pp. 2134–2156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Tkachuk and C. Linder, “The maximal advance path constraint for the homogenization of materials with random network microstructure,” Philosophical Magazine, vol. 92, no. 22, pp. 2779–2808, 2012. View at Publisher · View at Google Scholar
  57. V. M. Spitzer and D. G. Whitlock, “The visible human dataset: the anatomical platform for human simulation,” The Anatomical Record, vol. 253, no. 2, pp. 49–57, 1998. View at Google Scholar
  58. W. Herzog and T. R. Leonard, “Force enhancement following stretching of skeletal muscle: a new mechanism,” Journal of Experimental Biology, vol. 205, no. 9, pp. 1275–1283, 2002. View at Google Scholar · View at Scopus
  59. D. Labeit, K. Watanabe, C. Witt et al., “Calcium-dependent molecular spring elements in the giant protein titin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13716–13721, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Rode, T. Siebert, and R. Blickhan, “Titin-induced force enhancement and force depression: a “sticky-spring” mechanism in muscle contractions?” Journal of Theoretical Biology, vol. 259, no. 2, pp. 350–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Sharafi and S. S. Blemker, “A micromechanical model of skeletal muscle to explore the effects of fiber and fascicle geometry,” Journal of Biomechanics, vol. 43, no. 16, pp. 3207–3213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Sharafi and S. S. Blemker, “A mathematical model of force transmission from intrafascicularly terminating muscle fibers,” Journal of Biomechanics, vol. 44, no. 11, pp. 2031–2039, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Hoyt, T. Kneezel, B. Castaneda, and K. J. Parker, “Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity,” Physics in Medicine and Biology, vol. 53, no. 15, pp. 4063–4080, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. van Loocke, C. G. Lyons, and C. K. Simms, “A validated model of passive muscle in compression,” Journal of Biomechanics, vol. 39, no. 16, pp. 2999–3009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Munteanu and L. F. Pavarino, “Decoupled schwarz algorithms for implicit discretizations of nonlinear monodomain and bidomain systems,” Mathematical Models and Methods in Applied Sciences, vol. 19, no. 7, pp. 1065–1097, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Göktepe and E. Kuhl, “Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem,” Computational Mechanics, vol. 45, no. 2-3, pp. 227–243, 2010. View at Publisher · View at Google Scholar · View at Scopus