Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014 (2014), Article ID 645732, 10 pages
Research Article

A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

1University of Canterbury, Christchurch 8041, New Zealand
2University of Liège, 4000 Liège, Belgium

Received 14 March 2014; Revised 30 July 2014; Accepted 31 July 2014; Published 20 August 2014

Academic Editor: Guang Wu

Copyright © 2014 Nor Salwa Damanhuri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs) were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps). Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA) in patients diagnosed with acute respiratory distress syndrome (ARDS). A scaling factor (α) was used to equate the area under the pressure curve (AUC) from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66) for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (). Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.