Table of Contents Author Guidelines Submit a Manuscript
Computational and Mathematical Methods in Medicine
Volume 2014, Article ID 985789, 14 pages
http://dx.doi.org/10.1155/2014/985789
Research Article

An Efficient Diagnosis System for Parkinson’s Disease Using Kernel-Based Extreme Learning Machine with Subtractive Clustering Features Weighting Approach

1College of Computer Science and Technology, Jilin University, No. 2699, QianJin Road, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
3College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China

Received 21 June 2014; Accepted 26 October 2014; Published 18 November 2014

Academic Editor: Dong Song

Copyright © 2014 Chao Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. F. Wooten, L. J. Currie, V. E. Bovbjerg, J. K. Lee, and J. Patrie, “Are men at greater risk for Parkinson's disease than women?” Journal of Neurology, Neurosurgery & Psychiatry, vol. 75, no. 4, pp. 637–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-motor symptoms of Parkinson's disease: diagnosis and management,” The Lancet Neurology, vol. 5, no. 3, pp. 235–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Ho, R. Iansek, C. Marigliani, J. L. Bradshaw, and S. Gates, “Speech impairment in a large sample of patients with Parkinson's disease,” Behavioural Neurology, vol. 11, no. 3, pp. 131–137, 1998. View at Google Scholar · View at Scopus
  4. K. M. Rosen, R. D. Kent, A. L. Delaney, and J. R. Duffy, “Parametric quantitative acoustic analysis of conversation produced by speakers with dysarthria and healthy speakers,” Journal of Speech, Language, and Hearing Research, vol. 49, no. 2, pp. 395–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Rahn III, M. Chou, J. J. Jiang, and Y. Zhang, “Phonatory impairment in Parkinson's disease: evidence from nonlinear dynamic analysis and perturbation analysis,” Journal of Voice, vol. 21, no. 1, pp. 64–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O. Ramig, “Suitability of dysphonia measurements for telemonitoring of Parkinson's disease,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 1015–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Shahbaba and R. Neal, “Nonlinear models using Dirichlet process mixtures,” Journal of Machine Learning Research, vol. 10, pp. 1829–1850, 2009. View at Google Scholar · View at MathSciNet · View at Scopus
  8. R. Das, “A comparison of multiple classification methods for diagnosis of Parkinson disease,” Expert Systems with Applications, vol. 37, no. 2, pp. 1568–1572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. O. Sakar and O. Kursun, “Telediagnosis of parkinson's disease using measurements of dysphonia,” Journal of Medical Systems, vol. 34, no. 4, pp. 591–599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Psorakis, T. Damoulas, and M. A. Girolami, “Multiclass relevance vector machines: sparsity and accuracy,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1588–1598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. P.-F. Guo, P. Bhattacharya, and N. Kharma, “Advances in detecting Parkinson’s disease,” in Medical Biometrics, vol. 6165 of Lecture Notes in Computer Science, pp. 306–314, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  12. P. Luukka, “Feature selection using fuzzy entropy measures with similarity classifier,” Expert Systems with Applications, vol. 38, no. 4, pp. 4600–4607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D.-C. Li, C.-W. Liu, and S. C. Hu, “A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets,” Artificial Intelligence in Medicine, vol. 52, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ozcift and A. Gulten, “Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms,” Computer Methods and Programs in Biomedicine, vol. 104, no. 3, pp. 443–451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Åström and R. Koker, “A parallel neural network approach to prediction of Parkinson's Disease,” Expert Systems with Applications, vol. 38, no. 10, pp. 12470–12474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Spadoto, R. C. Guido, F. L. Carnevali, A. F. Pagnin, A. X. Falcao, and J. P. Papa, “Improving Parkinson's disease identification through evolutionary-based feature selection,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '11), pp. 7857–7860, Boston, Mass, USA, August 2011. View at Publisher · View at Google Scholar
  17. K. Polat, “Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering,” International Journal of Systems Science, vol. 43, no. 4, pp. 597–609, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. H.-L. Chen, C.-C. Huang, X.-G. Yu et al., “An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach,” Expert Systems with Applications, vol. 40, no. 1, pp. 263–271, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Daliri, “Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease,” Biomedical Signal Processing and Control, vol. 8, no. 1, pp. 66–70, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. W.-L. Zuo, Z.-Y. Wang, T. Liu, and H.-L. Chen, “Effective detection of Parkinson's disease using an adaptive fuzzy k-nearest neighbor approach,” Biomedical Signal Processing and Control, vol. 8, no. 4, pp. 364–373, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Polat and S. S. Durduran, “Subtractive clustering attribute weighting (SCAW) to discriminate the traffic accidents on Konya-Afyonkarahisar highway in Turkey with the help of GIS: a case study,” Advances in Engineering Software, vol. 42, no. 7, pp. 491–500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Polat, “Application of attribute weighting method based on clustering centers to discrimination of linearly non-separable medical datasets,” Journal of Medical Systems, vol. 36, no. 4, pp. 2657–2673, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 42, no. 2, pp. 513–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Y. Zhu, A. K. Qin, P. N. Suganthan, and G. B. Huang, “Evolutionary extreme learning machine,” Pattern Recognition, vol. 38, no. 10, pp. 1759–1763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. L. Chiu, “Fuzzy model identification based on cluster estimation,” Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3, pp. 267–278, 1994. View at Google Scholar
  26. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95), pp. 1137–1143, Montreal, Canada, August 1995.
  29. J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning algorithms,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Ben-David, “Comparison of classification accuracy using Cohen's Weighted Kappa,” Expert Systems with Applications, vol. 34, no. 2, pp. 825–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. I. Smith, A Tutorial on Principal Components Analysis, vol. 51, Cornell University, Ithaca, NY, USA, 2002.
  32. C.-W. Hsu, C.-C. Chang, and C.-J. Lin, A Practical Guide to Support Vector Classification, 2003.